Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
mBio ; 15(1): e0269023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117086

RESUMO

The bacterium Zymomonas mobilis is best known for fermentatively producing more ethanol than yeast. However, Z. mobilis has also puzzled researchers for decades with the counterintuitive observation that disrupting aerobic respiration benefits aerobic growth, implying that fermentation remains favorable. Retention of detrimental respiration genes seemed to defy natural selection. New findings by Felczak et al. help clarify the importance of respiration for Z. mobilis and the factors that led to the confusing prior results (M. M. Felczak, M. P. Bernard, and M. A. TerAvest, 2023, mBio 14:e02043-23, https://doi.org/10.1128/mbio.02043-23). The team overcame redundancy from multiple genome copies to delete what turned out to be a key terminal oxidase. Unlike previous studies, wherein mutants exhibited low respiration rates and had improved aerobic growth, this mutant was incapable of respiration and had poor aerobic growth. Thus, respiration is important but surprisingly exceeds what is optimal under lab conditions. Respiration likely protects against toxic effects of oxygen, ensuring retention of respiration genes in the Z. mobilis genome.


Assuntos
Zymomonas , Zymomonas/genética , Fermentação , Etanol , Bactérias , Respiração , Saccharomyces cerevisiae
2.
Sci Rep ; 13(1): 1165, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670195

RESUMO

Cell-free systems have become valuable investigating tools for metabolic engineering research due to their easy access to metabolism without the interference of the membrane. Therefore, we applied Zymomonas mobilis cell-free system to investigate whether ethanol production is controlled by the genes of the metabolic pathway or is limited by cofactors. Initially, different glucose concentrations were added to the extract to determine the crude extract's capability to produce ethanol. Then, we investigated the genes of the metabolic pathway to find the limiting step in the ethanol production pathway. Next, to identify the bottleneck gene, a systemic approach was applied based on the integration of gene expression data on a cell-free metabolic model. ZMO1696 was determined as the bottleneck gene and an activator for its enzyme was added to the extract to experimentally assess its effect on ethanol production. Then the effect of NAD+ addition at the high concentration of glucose (1 M) was evaluated, which indicates no improvement in efficiency. Finally, the imbalance ratio of ADP/ATP was found as the controlling factor by measuring ATP levels in the extract. Furthermore, sodium gluconate as a carbon source was utilized to investigate the expansion of substrate consumption by the extract. 100% of the maximum theoretical yield was obtained at 0.01 M of sodium gluconate while it cannot be consumed by Z. mobilis. This research demonstrated the challenges and advantages of using Z. mobilis crude extract for overproduction.


Assuntos
Etanol , Zymomonas , Etanol/metabolismo , Fermentação , Zymomonas/genética , Zymomonas/metabolismo , Misturas Complexas/metabolismo , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Bioresour Technol ; 349: 126878, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189331

RESUMO

Inhibitors in lignocellulosic hydrolysates are toxic to Zymomonas mobilis and reduce its bioethanol production. This study revealed cysteine supplementation enhanced furfural tolerance in Z. mobilis with a 2-fold biomass increase. Transcriptomic study illustrated that cysteine biosynthesis pathway was down-regulated while cysteine catabolism was up-regulated with cysteine supplementation. Mutants for genes involved in cysteine metabolism were constructed, and metabolites in cysteine metabolic pathway including methionine, glutathione, NaHS, glutamate, and pyruvate were supplemented into media. Cysteine supplementation boosted glutathione synthesis or H2S release effectively in Z. mobilis leading to the reduced accumulation of reactive oxygen species (ROS) induced by furfural, while pyruvate and glutamate produced in the H2S generation pathway promoted cell growth by serving as the carbon or nitrogen source. Finally, cysteine supplementation was confirmed to enhance Z. mobilis tolerance against ethanol, acetate, and corncob hydrolysate with an enhanced ethanol productivity from 0.38 to 0.55 g-1∙L-1∙h-1.


Assuntos
Zymomonas , Cisteína/metabolismo , Suplementos Nutricionais , Fermentação , Lignina/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
4.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33452021

RESUMO

The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilisIMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker's yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.


Assuntos
Zymomonas , Divisão Celular , DNA Bacteriano , Etanol/metabolismo , Microscopia Eletrônica , Zymomonas/citologia , Zymomonas/genética , Zymomonas/ultraestrutura
5.
Appl Microbiol Biotechnol ; 105(4): 1709-1720, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33512573

RESUMO

Biological ethylene production is a promising sustainable alternative approach for fossil-based ethylene production. The high glucose utilization of Z. mobilis makes it as a promising bioethylene producer. In this study, Zymomonas mobilis has been engineered to produce ethylene through the introduction of the synthetic ethylene-forming enzyme (EFE). We also investigated the effect of systematically knocking out the competitive metabolic pathway of pyruvate in an effort to improve the availability of pyruvate for ethylene production in Z. mobilis expressing EFE. Guided by these results, we tested a number of conjectures that could improve the α-ketoglutarate supply. Optimization of these pathways and different substrate supplies resulted in a greater production of ethylene (from 1.36 to 12.83 nmol/OD600/mL), which may guide future engineering work on ethylene production using other organisms. Meanwhile, we achieved an ethylene production of 5.8 nmol/OD600/mL in the ZM532-efe strain using enzymatic straw hydrolysate of corn straw as the sole carbon source. As a preferred host in biorefinery technologies using lignocellulosic biomass as feedstock, heterologous expression of EFE in Z. mobilis converts the non-ethylene producing strain into an ethylene-producing one using a metabolic engineering approach, which is of great significance for the utilization of cellulosic biomass in the future. KEY POINTS: • Heterologous expression of EFE in Z. mobilis successfully converted the non-ethylene producing strain into an ethylene producer (1.36 nmol/OD600/mL). Targeted modifications of the central carbon metabolism can effectively improve ethylene production (peak production: 8.3 nmol/OD600/mL). • The addition of nutrients to the medium can further increase the production of ethylene (peak production: 12.8 nmol/OD600/mL). • The ZM532-efe strain achieved an ethylene production of 5.8 nmol/OD600/mL when enzymatic hydrolysate of corn straw was used as the sole carbon source.


Assuntos
Zymomonas , Biomassa , Etilenos , Engenharia Metabólica , Zea mays , Zymomonas/genética
6.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492664

RESUMO

p-Benzoquinone (BQ) is a lignin-derived inhibitor of biorefinery fermentation strains produced during pretreatment of lignocellulose. Unlike the well-studied inhibitors furan aldehydes, weak acids, and phenolics, the inhibitory properties of BQ, the microbial tolerance mechanism, and the detoxification strategy for this inhibitor have not been clearly elucidated. Here, BQ was identified as a by-product generated during acid pretreatment of various lignocellulose feedstocks, including corn stover, wheat straw, rice straw, tobacco stem, sunflower stem, and corncob residue. BQ at 20 to 200 mg/liter severely inhibited the cell growth and fermentability of various bacteria and yeast strains used in biorefinery fermentations. The BQ tolerance of the strains was found to be closely related to their capacity to convert BQ to nontoxic hydroquinone (HQ). To identify the key genes responsible for BQ tolerance, transcription levels of 20 genes potentially involved in the degradation of BQ in Zymomonas mobilis were investigated using real-time quantitative PCR in BQ-treated cells. One oxidoreductase gene, one hydroxylase gene, three reductase genes, and three dehydrogenase genes were found to be responsible for the conversion of BQ to HQ. Overexpression of the five key genes in Z. mobilis (ZMO1696, ZMO1949, ZMO1576, ZMO1984, and ZMO1399) accelerated its cell growth and cellulosic ethanol production in BQ-containing medium and lignocellulose hydrolysates.IMPORTANCE This study advances our understanding of BQ inhibition behavior and the mechanism of microbial tolerance to this inhibitor and identifies the key genes responsible for BQ detoxification. The insights here into BQ toxicity and tolerance provide the basis for future synthetic biology to engineer industrial fermentation strains with enhanced BQ tolerance.


Assuntos
Benzoquinonas/análise , Fermentação , Lignina/metabolismo , Zymomonas/enzimologia , Zymomonas/genética , Etanol/metabolismo , Microbiologia Industrial , Zea mays/química
7.
Mol Microbiol ; 112(5): 1564-1575, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31468587

RESUMO

Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial-derived liposomes showed that hopanoids protect against several ethanol-driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter-lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.


Assuntos
Anti-Infecciosos Locais/farmacologia , Tolerância a Medicamentos/genética , Etanol/farmacologia , Triterpenos/metabolismo , Zymomonas/genética , Membrana Celular/metabolismo , Lipídeos de Membrana/classificação , Lipídeos de Membrana/metabolismo , Solventes/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Zymomonas/efeitos dos fármacos
8.
Electron. j. biotechnol ; 30: 118-124, nov. 2017. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1021652

RESUMO

Background: Zymomonas mobilis is a Gram-negative microaerophilic bacterium with excellent ethanol-producing capabilities. The RecET recombination system provides an efficient tool for direct targeting of genes in the bacterial chromosome by PCR fragments. Results: The plasmids pSUZM2a-RecET and pSUZM2a-RecE588T were first developed to co-express RecE or RecE588 and RecT for homologous recombination. Thereafter, the PCR fragments of the tetracycline resistance marker gene flanked by 60 bp of adhA (alcohol dehydrogenase I) or adhB (alcohol dehydrogenase II) homologous sequences were electroporated directly into ZM4 cells harboring pSUZM2a-RecET or pSUZM2a-RecE588T. Both adhA and adhB were replaced by the tetracycline resistance gene in ZM4, yielding two mutant strains, Z. mobilis ZM4 ΔadhA and Z. mobilis ZM4 ΔadhB. These two mutants showed varying extent of reduction in ethanol production, biomass generation, and glucose metabolism. Furthermore, enzyme activity of alcohol dehydrogenase II in Z. mobilis ZM4 ΔadhB exhibited a significant reduction compared to that of wild-type ZM4. Conclusion: This approach provided a simple and useful method for introducing mutations and heterologous genes in the Z. mobilis genome.


Assuntos
Zymomonas/genética , Recombinação Homóloga , Plasmídeos , Recombinação Genética , Álcool Desidrogenase/metabolismo , Zymomonas/enzimologia , Eletroporação , Etanol/metabolismo , Técnicas de Inativação de Genes , Mutação
9.
Mol Biosyst ; 12(4): 1241-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883123

RESUMO

Zymomonas mobilis is an ethanologenic bacterium and is known to be an example microorganism with energy-uncoupled growth. A genome-scale metabolic model could be applicable for understanding the characteristics of Z. mobilis with rapid catabolism and inefficient energy conversion. In this study, a charge balanced genome-scale metabolic model (iEM439) of Z. mobilis ATCC 10988 (ZM1) including 439 genes, 692 metabolic reactions and 658 metabolites was reconstructed based on genome annotation and previously published information. The model presents a much better prediction for biomass and ethanol concentrations in a batch culture by using dynamic flux balance analysis compared with the two previous genome-scale metabolic models. Furthermore, intracellular flux distribution obtained from the model was consistent with the fluxes for glucose fermentation determined by (13)C NMR. The model predicts that there is no difference in growth rates of Z. mobilis under aerobic and anaerobic conditions whereas ethanol production is decreased and production of other metabolites including acetate and acetoin is increased under aerobic conditions. Experimental data confirm the predicted differences between the aerobic and anaerobic growth of Z. mobilis. Finally, the model was used to study the energy-uncoupled growth of Z. mobilis and to predict its effect on flux distribution in the central metabolism. Flux distribution obtained from the model indicates that coupling growth and energy reduces ethanol secretion and changes the flux distribution to produce more biomass. This coupling is also associated with a significant increase in the proton uptake rate based on the prediction of the charge balanced model. Hence, resistance to intracellular pH reduction could be the main reason for uncoupled growth and Z. mobilis uses ATPase to pump out the proton. Experimental observations are in accordance with the predicted relationship between growth, ATP dissipation and proton exchange.


Assuntos
Estudo de Associação Genômica Ampla , Metaboloma , Metabolômica , Modelos Biológicos , Zymomonas/genética , Zymomonas/metabolismo , Adenosina Trifosfatases/metabolismo , Algoritmos , Simulação por Computador , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Metabolômica/métodos , Consumo de Oxigênio , ATPases Translocadoras de Prótons/metabolismo , Reprodutibilidade dos Testes
10.
Electron. j. biotechnol ; 19(1): 33-40, Jan. 2016. ilus
Artigo em Inglês | LILACS | ID: lil-781168

RESUMO

Background: Zymomonas mobilis, as a novel platform for bio-ethanol production, has been attracted more attention and it is very important to construct vectors for the efficient expression of foreign genes in this bacterium. Results: Three shuttle vectors ( pSUZM 1, pSUZM2 and pSUZM3 ) were first constructed with the origins of replication from the chromosome and two native plasmids (pZZM401 and pZZM402) of Z. mobilis ZM4, respectively. The three shuttle vectors were stable in Z. mobilis ZM4 and have 3,32 and 27 copies, respectively. The promoter Ppdc (a), from the pyruvate decarboxylase gene, was clonedinto the shuttle vectors, generatingthe expressionvectors pSUZM1(2, 3)a. The codon-optimized glucoamylase gene from Aspergillus awamori combined with the signal peptide sequence from the alkaline phosphatase gene of Z. mobilis was cloned into pSUZM1(2, 3)a, resulting in the plasmids pSUZM1a-GA, pSUZM2a-GA and pSUZM3a-GA, respectively. After transforming these plasmids into Z. mobilis ZM4, the host was endowed with glucoamylase activity for starch hydrolysis. Both pSUZM2a-GA and pSUZM3a-GA were more efficientatproducingglucoamylase thanpSUZM1a-GA. Conclusions: These results indicated that these expression vectors are useful tools for gene expression in Z. mobilis and this could provide a solid foundation for further studies of heterologous gene expression in Z. mobilis.


Assuntos
Expressão Gênica/genética , Zymomonas/genética , Zymomonas/metabolismo , Vetores Genéticos/genética , Plasmídeos , Glucana 1,4-alfa-Glucosidase , Fermentação , Reação em Cadeia da Polimerase em Tempo Real
11.
Genet Mol Res ; 14(1): 805-14, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25730020

RESUMO

Zymomonas mobilis is a Gram-negative bacterium that has drawn attention in the bioethanol industry. Besides bioethanol, this bacterium also produces other biotechnological products such as levans, which show antitumor activity. Molecular studies involving Z. mobilis have advanced to the point that allows us to characterize interspecies genetic diversity and understand their metabolism, and these data are essential for better utilization of this species. In this study, the genetic diversity of 24 strains from the Microorganisms Collection of Departamento de Antibióticos (UFPEDA) from Universidade Federal de Pernambuco were characterized. The methods used were amplified ribosomal DNA restriction analysis and diversity analysis of the internally transcribed 16S-23S rDNA spacer region (ISR). These analyses revealed low genetic variability of the 16S rDNA gene. These data confirm that these isolates are, or are closely related to, Z. mobilis. Moreover, the analysis of the ISR confirmed the genetic variability of strains deposited in the UFPEDA collection of microorganisms and grouped these strains into ten ribotypes, which can be used in the future for breeding programs and for the preservation of biodiversity. Furthermore, this study characterized the genetic variability between the UFPEDA 205/ ZAP, UFPEDA 98/AG11, and ZAG strains, which were obtained by spheroplast fusion among them. The data also indicate that there is genetic variability among the UFPEDA 202/CP4 and UFPEDA 633/ ZM4 strains, demonstrating that these important Z. mobilis strains are distinct, as suggested in previous studies.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , DNA Ribossômico/genética , Variação Genética , Zymomonas/genética , Biocombustíveis/microbiologia , Etanol/metabolismo , Zymomonas/metabolismo
12.
J Basic Microbiol ; 54(10): 1090-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24599704

RESUMO

To investigate the mechanisms of Zymomonas mobilis uncoupled aerobic metabolism, growth properties of the wild-type strain Zm6 were compared to those of its respiratory mutants cytB and cydB, and the effects of the ATPase inhibitor DCCD on growth and intracellular ATP concentration were studied. The effects of the ATPase inhibitor DCCD on growth and intracellular ATP concentration strongly indicated that the apparent lack of oxidative phosphorylation in aerobically growing Z. mobilis culture might be caused by the ATP hydrolyzing activity of the H(+) -dependent ATPase in all analyzed strains. Aerobic growth yields of the mutants, and their capacity of oxidative ATP synthesis with ethanol were closely similar, not supporting presence of one major, yet energetically inefficient electron transport branch causing the observed poor aerobic growth and lack of oxidative phosphorylation in Z. mobilis. We suggest that rapidly operating Entner-Doudoroff pathway generates too high phosphorylation potential for the weakly coupled respiratory system to shift the H(+) -dependent ATPase toward ATP synthesis.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Zymomonas/metabolismo , Trifosfato de Adenosina/biossíntese , Aerobiose , Dicicloexilcarbodi-Imida/farmacologia , Glicólise/efeitos dos fármacos , Redes e Vias Metabólicas , Mutação , Oxirredução , Fosforilação Oxidativa , Zymomonas/genética , Zymomonas/crescimento & desenvolvimento
13.
Microbiology (Reading) ; 159(Pt 12): 2674-2689, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24085837

RESUMO

Zymomonas mobilis, an ethanol-producing bacterium, possesses the Entner-Doudoroff (E-D) pathway, pyruvate decarboxylase and two alcohol dehydrogenase isoenzymes for the fermentative production of ethanol and carbon dioxide from glucose. Using available kinetic parameters, we have developed a kinetic model that incorporates the enzymic reactions of the E-D pathway, both alcohol dehydrogenases, transport reactions and reactions related to ATP metabolism. After optimizing the reaction parameters within likely physiological limits, the resulting kinetic model was capable of simulating glycolysis in vivo and in cell-free extracts with good agreement with the fluxes and steady-state intermediate concentrations reported in previous experimental studies. In addition, the model is shown to be consistent with experimental results for the coupled response of ATP concentration and glycolytic flux to ATPase inhibition. Metabolic control analysis of the model revealed that the majority of flux control resides not inside, but outside the E-D pathway itself, predominantly in ATP consumption, demonstrating why past attempts to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful. Co-response analysis indicates how homeostasis of ATP concentrations starts to deteriorate markedly at the highest glycolytic rates. This kinetic model has potential for application in Z. mobilis metabolic engineering and, since there are currently no E-D pathway models available in public databases, it can serve as a basis for the development of models for other micro-organisms possessing this type of glycolytic pathway.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Zymomonas/genética , Zymomonas/metabolismo , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Etanol/metabolismo , Glucose/metabolismo , Modelos Biológicos , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia
14.
Appl Microbiol Biotechnol ; 97(4): 1571-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22526778

RESUMO

Squalene-hopene cyclases (SHCs) are prokaryotic enzymes that catalyse the cyclisation of the linear precursor squalene to pentacyclic hopene. Recently, we discovered that a SHC cloned from Zymomonas mobilis (ZMO-1548 gene product) has the unique property to cyclise the monoterpenoid citronellal to isopulegol. In this study, we performed saturation mutagenesis of three amino acids of the catalytic centre of ZMO-1548 (F428, F486 and W555), which had been previously identified to interact with enzyme-bound substrate. Replacement of F428 by tyrosine increased hopene formation from squalene, but isopulegol-forming activity was strongly reduced or abolished in all muteins of position 428. W555 was essential for hopene formation; however, three muteins (W555Y, W428F or W555T) revealed enhanced cyclisation efficiency with citronellal. The residue at position 486 turned out to be the most important for isopulegol-forming activity. While the presence of phenylalanine or tyrosine favoured cyclisation activity with squalene, several small and/or hydrophobic residues such as cysteine, alanine or isoleucine and others reduced activity with squalene but greatly enhanced isopulegol formation from citronellal. Replacement of the conserved aromatic residue corresponding to F486 to cysteine in other SHCs cloned from Z. mobilis (ZMO-0872), Alicyclobacillus acidocaldarius (SHC(Aac)), Acetobacter pasteurianus (SHC(Apa)), Streptomyces coelicolor (SHC(Sco)) and Bradyrhizobium japonicum (SHC(Bja)) resulted in more or less strong isopulegol-forming activities from citronellal. In conclusion, many SHCs can be converted to citronellal cyclases by mutagenesis of the active centre thus broadening the applicability of this interesting class of biocatalyst.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Aldeídos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Monoterpenos/metabolismo , Zymomonas/enzimologia , Monoterpenos Acíclicos , Adenilil Ciclases/química , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Transferases Intramoleculares/química , Mutação de Sentido Incorreto , Especificidade por Substrato , Zymomonas/química , Zymomonas/genética
15.
Bioprocess Biosyst Eng ; 36(10): 1363-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23086550

RESUMO

Many bacteria reduce inorganic sulfate to sulfide to satisfy their need for sulfur, one of the most important elements for biological life. But little is known about the metabolic pathways involving hydrogen sulfide (H2S) in mesophilic bacteria. By genomic sequence analysis, a complete set of genes for the assimilatory sulfate reduction pathway has been identified in the ethanologen Zymomonas mobilis. In this study, the first ATP sulfurylase- and final sulfite reductase-encoding genes cysND and cysIJ, respectively, in the putative pathway from sulfate to sulfite in Z. mobilis ZM4 was singly or doubly inactivated by homologous recombination and a site-specific FLP-FRT recombination. The resultant mutants, ∆cysND, ∆cysIJ and ∆cysND-cat∆cysIJ, were unable to produce detectable H2S in glucose or sucrose-containing rich medium and sweet sorghum juice, in which the wild-type ZM4 produced detectable H2S. While adding sulfite (SO3²â») into media impaired the growth of the mutants and ZM4 to varying degrees, the sulfite restored the H2S formation in the ∆cysND in the above media, but not in the ∆cysIJ and ∆cysND-cat∆cysIJ mutants. Although it seemed that the inactivation of cysND and cysIJ did not exert a significant negative effect on the cell growth at least in glucose or sucrose medium, the ethanol production of all mutants was inferior to that of ZM4 in sucrose medium and sweet sorghum juice. In addition, adding L-cysteine to glucose-containing rich media restored H2S formation of all mutants, indicating the existence of another pathway for producing H2S in Z. mobilis. All these results would help to further elucidate the metabolic pathways involving H2S in Z. mobilis and exploit the biotechnological applications of this industrially important bacterium.


Assuntos
Etanol/metabolismo , Genes Bacterianos , Sulfeto de Hidrogênio/metabolismo , Mutação , Zymomonas/metabolismo , Sequência de Bases , Meios de Cultura , Primers do DNA , DNA Bacteriano/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Plasmídeos , Reação em Cadeia da Polimerase , Sulfato Adenililtransferase/genética , Zymomonas/genética , Zymomonas/crescimento & desenvolvimento
16.
Appl Microbiol Biotechnol ; 87(1): 205-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20127234

RESUMO

Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be approximately 28 kDa by sodium dodecyl sulfate-polyacrylamide gel and approximately 58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65 degrees C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k(cat) of 4.83 s(-1) for NADH (k(cat)/K(m) = 27.3 s(-1) mM(-1)) and k(cat) of 2.79 s(-1) for NADPH (k(cat)/K(m) = 10.8 s(-1) mM(-1)). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Zymomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Cinética , Dados de Sequência Molecular , Peso Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/metabolismo , Zymomonas/química , Zymomonas/genética
17.
Biotechnol Prog ; 22(2): 359-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16599547

RESUMO

Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.


Assuntos
Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Fermentação , Glucose/metabolismo , Xilose/metabolismo , Zymomonas/metabolismo , Cinética , Mutação/genética , Zymomonas/classificação , Zymomonas/genética
18.
Protein Sci ; 14(10): 2574-81, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16155206

RESUMO

We have identified two new lysozyme-like protein families by using a combination of sequence similarity searches, domain architecture analysis, and structural predictions. First, the P5 protein from bacteriophage phi8, which belongs to COG3926 and Pfam family DUF847, is predicted to have a new lysozyme-like domain. This assignment is consistent with the lytic function of P5 proteins observed in several related double-stranded RNA bacteriophages. Domain architecture analysis reveals two lysozyme-associated transmembrane modules (LATM1 and LATM2) in a few COG3926/DUF847 members. LATM2 is also present in two proteins containing a peptidoglycan binding domain (PGB) and an N-terminal region that corresponds to COG5526 with uncharacterized function. Second, structure prediction and sequence analysis suggest that COG5526 represents another new lysozyme-like family. Our analysis offers fold and active-site assignments for COG3926/DUF847 and COG5526. The predicted enzymatic activity is consistent with an experimental study on the zliS gene product from Zymomonas mobilis, suggesting that bacterial COG3926/DUF847 members might be activators of macromolecular secretion.


Assuntos
Cystoviridae/enzimologia , Muramidase/química , Análise de Sequência de Proteína , Proteínas Virais/química , Zymomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Biologia Computacional/métodos , Cystoviridae/genética , Dados de Sequência Molecular , Família Multigênica/genética , Muramidase/genética , Estrutura Terciária de Proteína , Análise de Sequência de Proteína/métodos , Zymomonas/genética
19.
Biotechnol Lett ; 25(19): 1653-6, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14584923

RESUMO

Levansucrase is responsible for levan formation during sucrose fermentation of Zymomonas mobilis, and this decreases the efficiency of ethanol production. As thiol modifying agents decrease levan formation, a role for cysteine residues in levansucrase activity has been examined using derivatives of Z. mobilis levansucrase that carry serine substitutions of cysteine at positions 121, 151 or 244. These substitutions abolished the levan forming activity of levansucrase whilst only halving its activity in sucrose hydrolysis. Thus, polymerase and hydrolase activities of Z. mobilis levansucrase are separate and have different requirements for the enzyme's cysteine residues.


Assuntos
Cisteína/metabolismo , Frutanos/biossíntese , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Engenharia de Proteínas/métodos , Serina/metabolismo , Zymomonas/enzimologia , Zymomonas/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Clonagem Molecular/métodos , Cisteína/química , Escherichia coli/enzimologia , Escherichia coli/genética , Frutanos/genética , Hexosiltransferases/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Serina/química , Sacarose/metabolismo
20.
DNA Res ; 7(4): 237-42, 2000 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-10997873

RESUMO

The levansucrase gene (lsxA) was cloned from the genomic DNA of Acetobacter xylinum NCI 1005, and the nucleotide sequence of the lsxA gene (1,293 bp) was determined. The deduced amino acid sequence of the lsxA gene showed 57.4% and 46.2% identity with the levansucrases from Zymomonas mobilis and Erwinia amylovora, respectively, while only 35.2% identity with that from Acetobacter diazotrophicus. The gene product of lsxA (LsxA) that was overproduced in E. coli coded for a polypeptide of molecular mass 47 kDa. The LsxA released glucose and produced polysaccharide from sucrose, the structure of which was analyzed by nuclear magnetic resonance spectroscopy and determined to be a beta-(2,6)-linked polyfructan.


Assuntos
Gluconacetobacter xylinus/genética , Hexosiltransferases/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Erwinia/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Polissacarídeos/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sacarose/metabolismo , Fatores de Tempo , Zymomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA