Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Food Chem Toxicol ; 186: 114525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408632

RESUMO

3-monochloropropane-1,2-diol esters (3-MCPDE) are toxic substances that form in food thermal processing and have a diverse range of toxicities. In this study, we found that 3-MCPDE triggered necroptosis by RIPK1/RIPK3/MLKL pathway in HepG2 cells. Previous studies have shown that ROS is an important activator of RIPK1 and RIPK3. The data showed that 3-MCPDE induced excessive ROS production through mitochondrial damage. After treatment with ROS inhibitor N-acetylcysteine (NAC), 3-MCPDE-induced necroptosis was relieved. Further, we explored how 3-MCPDE destroys mitochondria. The data suggested that 3-MCPDE induced mitochondrial dysfunction through the CTSB/TFAM pathway. Overall, the results indicated that 3-MCPDE induced necroptosis through CTSB/TFAM/ROS pathway in HepG2 cells. Our study provided a new mechanism for 3-MCPDE hepatotoxicity.


Assuntos
alfa-Cloridrina , alfa-Cloridrina/análogos & derivados , Humanos , alfa-Cloridrina/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Ésteres/toxicidade , Células Hep G2 , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Sci Total Environ ; 874: 162474, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36863584

RESUMO

3-Monochloro-1,2-propanediol (3-MCPD) is a pervasive environmental pollutant that is unintentionally produced during industrial production and food processing. Although some studies reported the carcinogenicity and male reproduction toxicity of 3-MCPD thus far, it remains unexplored whether 3-MCPD hazards to female fertility and long-term development. In this study, the model Drosophila melanogaster was employed to evaluate risk assessment of emerging environmental contaminants 3-MCPD at various levels. We found that flies on dietary exposure to 3-MCPD incurred lethality in a concentration- and time-dependent way and interfered with metamorphosis and ovarian development, resulting in developmental retardance, ovarian deformity and female fecundity disorders. Mechanistically, 3-MCPD caused redox imbalance observed as a drastically increased oxidative status in ovaries, confirmed by increased reactive oxygen species (ROS) and decreased antioxidant activities, which is probably responsible for female reproductive impairments and developmental retardance. Intriguingly, these defects can be substantially prevented by a natural antioxidant, cyanidin-3-O-glucoside (C3G), further confirming a critical role of ovarian oxidative damage in the developmental and reproductive toxicity of 3-MCPD. The present study expanded the findings that 3-MCPD acts as a developmental and female reproductive toxicant, and our work provides a theoretical basis for the exploitation of a natural antioxidant resource as a dietary antidote for the reproductive and developmental hazards of environmental toxicants that act via increasing ROS in the target organ.


Assuntos
alfa-Cloridrina , Animais , Masculino , Feminino , alfa-Cloridrina/toxicidade , Drosophila melanogaster , Antioxidantes , Propilenoglicol , Espécies Reativas de Oxigênio , Ovário , Glucosídeos
3.
Food Chem Toxicol ; 172: 113555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493944

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD), glycidol, together with their fatty acid esters are commonly presented in various food and have shown carcinogenicity in various laboratory animals. Public health risk assessment of 3-MPCD and glycidol exposure relies on quantitative tools that represent their in vivo toxicokinetics. In order to better understand the absorption, distribution, metabolism, and excretion profiles of 3-MCPD and glycidol in male rats, a physiologically based pharmacokinetic (PBTK) model was developed. The model's predictive power was evaluated by comparing in silico simulations to in vivo time course data obtained from experimental studies. Results indicate that our PBTK model successfully captured the toxicokinetics of both free chemicals in key organs, and their metabolites in accessible biological fluids. With the validated PBTK model, we then gave an animal-free example on how to extrapolate the toxicological knowledge acquired from a single gavage to a realistic dietary intake scenario. Three biomarkers, free compound in serum, urinary metabolite DHPMA, and glycidol-hemoglobin adduct (diHOPrVal) were selected for in silico simulation following constant dietary intakes, and their internal levels were correlated with proposed external daily exposure via reverse dosimetry approaches. Taken together, our model provides a computational approach for extrapolating animal toxicokinetic experiments to biomonitoring measurement and risk assessment.


Assuntos
alfa-Cloridrina , Masculino , Ratos , Animais , alfa-Cloridrina/toxicidade , Toxicocinética , Propanóis/toxicidade , Propanóis/metabolismo , Compostos de Epóxi/toxicidade , Modelos Biológicos
4.
Food Chem ; 403: 134332, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156403

RESUMO

3-Chloro-1,2-propanediol (3-MCPD) and its fatty acid esters (FE) are present as contaminants in different processed foods. Based on the available toxicological data the potential risk of 3-MCPD and its FE to human health was assessed by risk assessment authorities, including the European Food Safety Authority (EFSA). Considering the available data, EFSA concluded that 3-MCPD is a non-genotoxic compound exhibiting secondary carcinogenic effects in rodents. A tolerable daily intake of 2 µg/kg body weight and day was derived by EFSA for free and ester-bound 3-MCPD in 2018. However, there are still different pending issues that have remained unclear until now. Here, we summarize the current knowledge regarding 3-MCPD and its FE with a focus on pending issues regarding exposure assessment via biomarkers as well as the identification of (toxic) metabolites formed after exposure to FE of 3-MCPD and their modes of action.


Assuntos
alfa-Cloridrina , Humanos , alfa-Cloridrina/toxicidade , alfa-Cloridrina/análise , Ésteres/análise , Ácidos Graxos , Medição de Risco , Inocuidade dos Alimentos , Contaminação de Alimentos/análise
5.
Food Res Int ; 152: 110898, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181075

RESUMO

The widespread presence of 3-monochloropropane-1,2-diol (3-MCPD) and glycidol in refined edible oils have raised food industrial and public health concerns, but their specific biomarkers of exposure and urinary metabolic pathways indicating nephrotoxicity remain largely unknown. Here, we unraveled the in vivo biotransformation of these two contaminants and revealed how they affect metabolic pathways in rats. Urine metabolomes in rats administered with glycidol or 3-MCPD were investigated using ultra-high performance liquid chromatography combined with a quadrupole-orbitrap high-resolution mass spectrometry. Compared to the currently acknowledged metabolite which is only 2,3-dihydroxypropyl mercapturic acid, we identified 8 and 4 new specific exposure biomarkers of glycidol and 3-MCPD, respectively, via mapping the glyceryl polymerization and glutathione and sulfur conjugation. The changes of metabolites in the surrounding metabolic network were investigated to further gain insight into their metabolic fates. Exposure to glycidol up-regulated citrate, isocitrate, ketoglutarate, malate, and pyruvate in the tricarboxylic acid cycle and glycolysis pathways, while 3-MCPD intake down-regulated these signal molecules in both pathways. Nonetheless, L-cysteine, proline, and arginine were significantly decreased by the effect of either glycidol or 3-MCPD. Our findings first map the urinary metabolomics of both contaminants from edible oils and advance the omics-level recognition for their observational health hazards.


Assuntos
alfa-Cloridrina , Acetilcisteína/análogos & derivados , Animais , Compostos de Epóxi , Óleos de Plantas/química , Propanóis , Ratos , Toxicocinética , alfa-Cloridrina/análise , alfa-Cloridrina/toxicidade
6.
Food Chem Toxicol ; 160: 112814, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999178

RESUMO

We investigated whether diallyl disulfide (DADS) has protective effects against 1,3-dichloro-2-propanol (1,3-DCP)-induced hepatotoxicity and oxidative damage in rats and HepG2 cells. DADS was administered to rats once daily for 7 days at doses of 30 and 60 mg/kg/day. One hour after the final DADS treatment, the rats were administered 90 mg/kg 1,3-DCP to induce acute hepatotoxicity. DADS treatment significantly suppressed the increase in serum aminotransferase levels induced by 1,3-DCP administration, and reduced histopathological alterations in the liver. DADS treatment reduced 1-3-DCP-induced apoptotic changes in the liver, as revealed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining and immunohistochemistry for caspase-3. DADS treatment competitively inhibited or reduced cytochrome p450 2E1 (CYP2E1) expression, which is involved in the metabolic activation of 1,3-DCP, and enhanced antioxidant properties. Furthermore, DADS treatment inhibited phosphorylation of mitogen-activated protein kinases (MAPKs) and apoptotic signaling. In in vitro experiments, MAPKs inhibitors reduced the expression of Bax/Bcl-2/Caspase 3 signaling, which effects were more significant in co-treated cells with DADS and MAPKs inhibitors. In conclusion, the protective effect of DADS against 1,3-DCP-induced hepatotoxicity may be related to blocking the metabolic activation of 1,3-DCP by suppressing CYP2E1 expression, inducing antioxidant enzyme activity, and reducing apoptotic activity by inhibiting phosphorylation of MAPKs.


Assuntos
Compostos Alílicos/administração & dosagem , Dissulfetos/administração & dosagem , Hepatopatias/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Substâncias Protetoras/farmacologia , alfa-Cloridrina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Humanos , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , alfa-Cloridrina/toxicidade
7.
Environ Sci Pollut Res Int ; 29(27): 41140-41150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088268

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) is a food contaminant formed during acid hydrolysis of vegetable proteins. The toxicological evaluation of smaller doses of 3-MCPD is essential for safety evaluation of this compound. The present study investigates the toxicologic potential of 3-MCPD on male genital organs of rats, applies a correlation between the induced infertility and developed lesions in testes, epididymis, and accessory glands and study the possible mechanisms of 3-MCPD-induced male infertility. Forty rats were randomly divided into four main groups of ten animals each: the control untreated group and three treated groups that were orally administered 3-MCPD at different doses (3, 7.5 and 15 mg/kg b.w) daily via stomach intubation for five successive days per week. Five rats from each group were euthanized after 30 days. The remaining rats were euthanized after 90 days to establish subacute and chronic toxicity studies. Oxidative stress markers, Nrf2 gene expression, semen analysis, and histopathological examination were performed at the end of each experimental period. Results indicated that 3-MCPD induces infertility in male rat via disruption of Nrf2 expression in the testicular tissue with subsequent increased oxidative stress indicators in the testis that affect spermatogenesis and induced testicular degeneration, in addition, induction of epididymal lesions that affect sperm motility and concentration and finally possible development of hyperplastic tissue reactions in accessory glands of intoxicated rats predicting the carcinogenic potential of this compound.


Assuntos
Infertilidade Masculina , alfa-Cloridrina , Animais , Humanos , Masculino , Ratos , alfa-Cloridrina/toxicidade , Epididimo , Infertilidade Masculina/induzido quimicamente , Fator 2 Relacionado a NF-E2 , Propilenoglicol , Motilidade dos Espermatozoides , Testículo
8.
J Food Sci ; 86(12): 5503-5515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34812491

RESUMO

In recent years, foodborne pollutants have become a hot issue in the field of food safety. 3-chloro-1,2-propanediol (3-MCPD) is a widely existing food contaminant. In our previous study, it was confirmed that 3-MCPD can block autophagic flux by inhibiting lysosomal function, thus causing liver injury. Ginseng is a traditional Chinese herbal medicine that contains a variety of bioactive ingredients, among which ginsenoside Rb1 (Gs-Rb1) is the most abundant. In this study, we aim to use Gs-Rb1 to improve 3-MCPD-induced autophagic flux blockage to alleviate liver injury. First, a nontoxic dose of Gs-Rb1 was identified by screening with the MTT method in which Gs-Rb1was added to HepG2 cells and co-treated with 3-MCPD. We found that Gs-Rb1 effectively enhanced the cell activity inhibited by 3-MCPD. Meanwhile, apoptosis data showed that Gs-Rb1 significantly alleviated the apoptosis of HepG2 cells induced by 3-MCPD. Subsequently, we found that Gs-Rb1 could alleviate autophagic flux blockage caused by 3-MCPD in a dose-dependent manner by detecting autophagy-related protein levels and transfecting mRFP-GFP-LC3 adenovirus. On this basis, we used Western blotting and qPCR to explore whether miR-128 was involved in the alleviation effect of Gs-Rb1 on autophagic flux blockade induced by 3-MCPD. The results showed that Gs-Rb1 inhibited the expression of miR-128 and promoted the nuclear expression and target gene transcription of TFEB. Finally, the findings were confirmed by using a hsa-miR-128 inhibitor and mimic. We found that hsa-miR-128 inhibitor alleviated the autophagic flux blockage and apoptosis caused by 3-MCPD and Gs-Rb1 also had a certain alleviation effect on the autophagic flux blockage and apoptosis caused by hsa-miR-128 mimic. This study elaborated the mechanism by which Gs-Rb1 alleviates hepatotoxicity induced by foodborne 3-MCPD by stimulating autophagic flux via miR-128-targeted TFEB, which provides a reliable theoretical basis and target for the use of natural substances to reduce the harm of food processing pollutants on the human body. PRACTICAL APPLICATION: We found that natural ginsenoside Rb1 can alleviate liver injury induced by 3-MCPD(a toxic substance found in foods such as refined vegetable oil, soy sauce, and baby milk powder), which is conducive to the development and utilization of ginseng and has practical significance for the prevention of foodborne liver injury.


Assuntos
alfa-Cloridrina , Ginsenosídeos , Humanos , Fígado , Proteínas de Ligação a Retinoblastoma , Ubiquitina-Proteína Ligases , alfa-Cloridrina/toxicidade
9.
Toxicol Appl Pharmacol ; 430: 115727, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543670

RESUMO

Electronic cigarettes (e-cigarettes) have gained increasing popularity in recent years, mostly because they are supposed to be less harmful than regular cigarettes. Therefore, it is highly imperative to investigate possible noxious effects to protect the consumers. E-liquids consist of propylene glycol, glycerol, aroma compounds and sweeteners. One of these sweeteners is a chlorinated version of sucrose, namely sucralose. The aim of this work was to investigate degradation products of sucralose in the presence of propylene glycol and glycerol at different temperatures of commercially available e-cigarettes. Chemical analysis and biological tests were simultaneously performed on e-liquid aerosol condensates. The results of the chemical analysis, which was executed by employing GC-MS/GC-FID, demonstrated high amounts of various chloropropanols. The most abundant one is extremely toxic, namely 3-chloropropane-1,2-diol, which can be detected at concentrations ranging up to 10,000 mg/kg. Furthermore, a cytotoxicity investigation of the condensates was performed on HUVEC/Tert2 cells in which metabolic activity was determined by means of resazurin assay. The cellular metabolic activity significantly decreased by treatment with e-liquid aerosol condensate. Due to the results of this study, we advise against the use of sucralose as sweetener in e-liquids.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/toxicidade , Propilenoglicol/toxicidade , Sacarose/análogos & derivados , Edulcorantes/toxicidade , Vaping/efeitos adversos , alfa-Cloridrina/toxicidade , Células Cultivadas , Qualidade de Produtos para o Consumidor , Estabilidade de Medicamentos , Glicerol/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Propilenoglicol/química , Medição de Risco , Sacarose/química , Sacarose/toxicidade , Edulcorantes/química , Temperatura , Testes de Toxicidade , Volatilização , alfa-Cloridrina/química
10.
Environ Toxicol Pharmacol ; 87: 103735, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34461274

RESUMO

3-chloropropane-1,2-diol (3-MCPD) and its toxic metabolite glycidol were classified by the International Agency for Research on Cancer (IARC) as belonging to group 2B and 2A for humans. This study aimed to determine the sub-acute toxicity of these agents. Rats were exposed to 3-MCPD at 0.87 and 10 mg/kg/bw and glycidol (2,4 and 37,5 mg/kg/bw) for 90 days. miR-21 gene expression levels significantly decreased in all group's cerebellar tissues compared with control. Exposure to 10 mg/kg/bw 3-MCPD showed significant increases in PTEN in brain as compared to control group. The Akt gen expressions were significantly decreased in 3-MCPD and glycidol groups when compared to control group brains. Additionally, Caspase 3 and AIF immunopositivity significantly increased in 3-MCPD high dose and glycidol high dose groups in cerebellum granular layers compared to control. The results of the present study conclude that 3-MCPD and glycidol can induce apoptosis in rat brain tissue.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Esterilizantes Químicos/toxicidade , Compostos de Epóxi/toxicidade , Propanóis/toxicidade , alfa-Cloridrina/toxicidade , Animais , Fator de Indução de Apoptose/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Caspase 3/metabolismo , Masculino , MicroRNAs , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos Wistar
11.
Arch Toxicol ; 95(9): 3117-3131, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269859

RESUMO

1,3-Dichloro-2-propanol (1,3-DCP), a food contaminant, exerts carcinogenic effects in multiple organs, including the liver and kidneys, in rats. However, the underlying mechanisms of 1,3-DCP-induced carcinogenesis remain unclear. Here, the in vivo mutagenicity and tumor-promoting activity of 1,3-DCP in the liver and kidneys were evaluated using medium-term gpt delta rat models previously established in our laboratory (GPG and GNP models). Six-week-old male F344 gpt delta rats were treated with 0 or 50 mg/kg body weight/day 1,3-DCP by gavage for 4 weeks. After 2 weeks of cessation, partial hepatectomy or unilateral nephrectomy was performed to collect samples for in vivo mutation assays, followed by single administration of diethylnitrosamine (DEN) for tumor initiation. One week after DEN injection, 1,3-DCP treatment was resumed, and tumor-promoting activity was evaluated in the residual liver or kidneys by histopathological analysis of preneoplastic lesions. gpt mutant frequencies increased in excised liver and kidney tissues following 1,3-DCP treatment. 1,3-DCP did not affect the development of glutathione S-transferase placental form-positive foci in residual liver tissues, but enhanced atypical tubule hyperplasia in residual kidney tissues. Detailed histopathological analyses revealed glomerular injury and increased cell proliferation of renal tubular cells in residual kidney tissues of rats treated with 1,3-DCP. These results suggested possible involvement of genotoxic mechanisms in 1,3-DCP-induced carcinogenesis in the liver and kidneys. In addition, we found that 1,3-DCP exhibited limited tumor-promoting activity in the liver, but enhanced clonal expansion in renal carcinogenesis via proliferation of renal tubular cells following glomerular injury.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , alfa-Cloridrina/análogos & derivados , Animais , Carcinogênese/efeitos dos fármacos , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade , Pentosiltransferases/genética , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , alfa-Cloridrina/toxicidade
12.
Mol Nutr Food Res ; 65(15): e2001202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075698

RESUMO

SCOPE: Diosgenin (DIO) is a natural steroid sapogenin presented in various plants. It exerts anti-oxidant, anti-inflammatory and anti-diabetic nephropathy properties. The present study evaluates the intervention effect of DIO on nephrotoxicity induced by food contaminant 3-chloro-1, 2-propanediol (3-MCPD) in vivo and in vitro. METHODS AND RESULTS: Treatment with DIO (15 mg kg-1 d-1 ) in Sprague-Dawley rats for 4-week relieves kidney injury induced by 3-MCPD (30 mg kg-1 d-1 ). In vitro, DIO (2, 6, and 8 µM) alleviates cell injury and apoptosis effectively in human embryonic kidney (HEK293) cells. DIO realizes its protective function via the regulation of endoplasmic reticulum (ER) stress and mitochondrial apoptosis pathway. Blockage of ER stress by 4-phenylbutyric acid (4-PBA), a specific ER stress antagonist, inhibits mitochondrial apoptosis, suggesting a connection between mitochondrial apoptosis and ER stress. Furthermore, the study demonstrates that the maintenance of Ca2+ homeostasis and Bcl2 expression, two main targets of ER stress, contributes to the protection role of DIO on mitochondrial-dependent apoptosis. In addition, DIO relieves the impairment of oxidative phosphorylation. CONCLUSION: This study demonstrates that DIO exerts protective effect against kidney injury, mitochondrial dysfunction, and apoptosis through the inhibition of ER stress and the further maintenance of Ca2+ homeostasis and Bcl2 expression.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Apoptose/efeitos dos fármacos , Diosgenina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley
13.
J Food Biochem ; 45(6): e13744, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913518

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) as a byproduct of food processing and a carcinogenic agent has attracted much attention in the last decades. Kidney is the main target organ that is sensitive to the toxicity of 3-MCPD. Due to limited evidence about possible 3-MCPD toxicity, we design an investigation to determine the role of mitochondrial biogenesis following chronic oral administration of 3-MCPD (2, 4, 8 and 32 mg/kg) for 2 months in male C57 mice. The present study evaluated the affects of 3-MCPD in modulating metabolic signalling which is associated with Il-18, PGC-1α, Nrf-2 and Sir3 which are the major transcription factors. Our data confirms controversial behaviors after chronic exposure with 3-MCPD. Over expression of the PGC-1α and Sir3 and IL-18 were observed after exposure with 2,4 & 8 mg kg-1  day-1 of 3-MCPD. In front, PGC-1α down-regulation occurs at the highest dose (32 mg/kg) resulted in kidney injury. Based on the findings, PGC-1α plays an important role in the restoration of the mitochondrial function during the recovery from chronic kidney injury. We suggest that the PGC-1α can be consider as a therapeutic target in prevention and treatment of kidney injury after chronic exposure of 3-MCPD. PRACTICAL APPLICATIONS: 3-Monochloropropane-1, 2-diol (3-MCPD) existed in several foods, can induce nephrotoxicity, progressive nephropathy and renal tubule dilation following acute and chronic exposure. It revealed that 3-MCPD toxicity is related to metabolites which can cause oxidative stress and activation of cell death signaling. It seems that cytotoxicity of 3-MCPD has disruptive effect on kidney cells due to rise in ROS production and decrease in mitochondrial membrane permeability. These effects can lead to MPT pore opening, cytochrome c release and activation of programed cell death signaling pathway. Therefore, present study was investigated the role of PGC-1a and the metabolic signaling involved in 3-MCPD-induced nephrotoxicity for the first time. Our data revealed that up-regulation of mitochondrial biogenesis following chronic exposure with 3-MCPD accelerates recovery of mitochondrial and cellular function in kidney by deacetylation of histones, overexpression of transcription factors (PGC-1α, Nrf-2, and Sir3) and maintaining cellular homeostasis.


Assuntos
alfa-Cloridrina , Animais , Manipulação de Alimentos , Rim/metabolismo , Masculino , Camundongos , Mitocôndrias , Transdução de Sinais , alfa-Cloridrina/metabolismo , alfa-Cloridrina/toxicidade
14.
Toxicology ; 454: 152716, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33581215

RESUMO

Great attention has been paid to 1,3-dichloro-2-propanol (1,3-DCP) due to its presence in food and concerns about toxic potential as carcinogens. In our previous study, we found that long-term low-dose 1,3-DCP exposure induced lipid accumulation in mouse liver. Recent studies have demonstrated that autophagy plays an important role in regulating lipid metabolism. So, we speculated that 1,3-DCP induced lipid accumulation by regulating autophagy in hepatocytes. In this study, we first studied the effect of 100 µM 1,3-DCP on autophagy flux in HepG2 cells. The data showed that 1,3-DCP (100 µM) impaired autophagy flux mainly through the attenuation of autophagosomes via AKT/mTOR signaling pathway and inhibition of lysosomes biosynthesis. Furthermore, we demonstrated that treatment with 100 µM 1,3-DCP for 24 h affected lipid metabolism through the colocalization of LC3 and Bodipy. We used an autophagy activator or an autophagy inhibitor to test the effect of 1,3-DCP on lipid accumulation through detecting lipid droplets staining, triglyceride (TG) and total cholesterol (TC). The data showed that 1,3-DCP-induced lipid accumulation was alleviated in the presence of Rapamycin (an autophagy activator). On the contrary, 1,3-DCP-induced lipid accumulation was significantly exacerbated in the presence of an autophagy inhibitor (3-methyladenine or chloroquine). These results suggested that 1,3-DCP might induce lipid accumulation by the impairment of autophagy flux in HepG2 cells.


Assuntos
Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , alfa-Cloridrina/análogos & derivados , Autofagossomos/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , alfa-Cloridrina/toxicidade
15.
Toxicol In Vitro ; 70: 105042, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33129984

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) fatty acid esters are process contaminants mainly formed during the refinement of vegetable oils. Gastrointestinal hydrolysis yields free 3-MCPD, which is resorbed into the body. In long-term rat studies, 3-MCPD caused renal and testicular neoplasms. 3-MCPD metabolism via ß-chlorolactic acid has been postulated to underlie the toxic effects of 3-MCPD. Various efforts are ongoing to characterize the toxicological mode of action of 3-MCPD using in vitro systems. Published results suggest a very low sensitivity of cell cultures in vitro, as compared to 3-MCPD levels causing toxic effects in vivo. The insensitivity of in vitro systems raises the question to which extent 3-MCPD is absorbed and metabolized in vitro. We therefore analyzed cytotoxicity, absorption and metabolism of 3-MCPD and its metabolite ß-chlorolactic acid in renal and hepatic cells. Cytotoxicity tests using up to 100 mM 3-MCPD confirmed the low sensitivity of human and rat cell lines towards 3-MCPD toxicity. Furthermore, absorption and metabolism of 3-MCPD examined via GC-MS and LC-MS/MS were only observed to a minor degree, and 3-MCPD was also not converted by a metabolizing system (S9 fraction). In conclusion, our data indicate that current in vitro models are not well suited for studying 3-MCPD metabolism and toxicity.


Assuntos
Rim/citologia , Fígado/citologia , alfa-Cloridrina/toxicidade , Absorção Fisiológica , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactatos/metabolismo , Ratos , Espectrometria de Massas em Tandem
16.
J Food Sci ; 85(11): 4061-4069, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33037666

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) as a main source of food contamination has always been known as a carcinogenic agent. Kidney, liver, testis, and heart seem to be the main target organs for 3-MCPD. Because oxidative stress and mitochondrial dysfunction have been realized to be involved in 3-MCPD-induced cytotoxicity, the present study aimed to investigate the probable toxicity mechanisms of 3-MCPD in isolated mitochondria, HEK-293 cell line, and cell isolated from the rats' liver and kidney through measuring multiparametric oxidative stress assay. Based on the data indicating no significant difference between 3-MCPD-treated groups and control group, metabolites of 3-MCPD have a key role in organ toxicity caused by them. To further investigating the suggested hypothesis, the effect of 3-MCPD toxicity on HEK-293 cell line was examined. Although the proliferation declined after exposure to a low dose of 3-MCPD (10 to 200 µM), controversial responses in higher concentration (2 to 10 mM) have led to studies on the effect of oxidative stress and cell death signaling on isolated kidney and liver cells. Treatment of the isolated kidney and liver cells with 3-MCPD resulted in an increase in the level of reactive oxygen species (ROS), the collapse of mitochondrial membrane potential (MMP), and activation of cell death signaling without creating any significant difference in the amount of reduced glutathione. In fact, 3-MCPD can disrupt the mitochondrial electron transfer in isolated cells, which is correlated with the impairment of mitochondrial oxidative phosphorylation system, the rise of ROS level, and the failure of MMP, leading to the release of cytochrome c from mitochondria to cytosol and finally the activation of cell death signaling.


Assuntos
Carcinógenos/toxicidade , Contaminação de Alimentos/análise , Estresse Oxidativo/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Food Chem Toxicol ; 145: 111740, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32910998

RESUMO

3-chlorpropane-1,2-diol (3-MCPD) is a heat-induced food process contaminant that threatens human health. As the primary target organ, the morphological and functional impairment of kidney and the related mechanism such as apoptosis and mitochondrial dysfunction were observed. However, the precise molecular mechanism remains largely unclear. This study aimed to explore the important role of mitochondrial fission and autophagy in the 3-MCPD-caused apoptosis of human embryonic kidney 293 (HEK293) cells. The results showed that blockage of dynamin-related protein-1 (Drp1) by mitochondrial division inhibitor 1 (Mdivi-1, 15 µM) apparently restored 3-MCPD-induced mitochondrial dysfunction, accompanied by prevented the collapse of mitochondrial membrane potential and ATP depletion, and suppressed the occurrence of autophagy. Induction of autophagy occurred following 2.5-10 mM 3-MCPD treatment for 24 h via AMPK mediated mTOR signaling pathway. Meanwhile, enhancement of autophagy by pretreatment with rapamycin (1 nM) alleviated the loss of cell viability and apoptosis induced by 3-MCPD whereas suppression of autophagy by 3-methyladenine (1 mM) further accelerated apoptosis, which was modulated through the mitochondria-dependent apoptotic pathway. Taking together, this study provides novel insights into the 3-MCPD-induced apoptosis in HEK293 cells and reveals that autophagy has potential as an effective intervention strategy for the treatment of 3-MCPD-induced nephrotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Dinaminas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Dinaminas/genética , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Food Chem Toxicol ; 136: 110957, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31712104

RESUMO

3-Chloro-1,2-propanediol (3-MCPD) is a food contaminant which has been classified as a non-genotoxic carcinogen (category 2B). Previous studies suggested that oxidative stress might play a role in 3-MCPD toxicity. To elucidate the impact of 3-MCPD-mediated organ toxicity in more detail, transgenic reporter mice were employed which contain a lacZ reporter under the control of the heme oxygenase 1 (Hmox1) promoter which is responsive to oxidative stress. The mice received daily doses of up to 100 mg/kg body weight 3-MCPD per day in a 28-day feeding study. Subsequently, tissue slices from different organs were subjected to X-Gal staining as the readout for lacZ gene expression. A dose-dependent increase of blue stain was observed in mouse kidney that was exclusively visible in the renal cortex but not in the renal medulla. Moreover, blue-stained regions were detected in the basal membrane of the seminiferous tubules in testes and also in specific brain regions (cerebellum, midbrain and pons). Notably, gene expression of a number of Nrf2-dependent target genes except Hmox1 was not severely affected by 3-MCPD. In all three organs, however, the amount of irreversibly oxidized DJ-1 protein, which is a biomarker for oxidative stress, was significantly increased already by low doses of 3-MCPD.


Assuntos
Encéfalo/efeitos dos fármacos , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Desglicase DJ-1/metabolismo , Testículo/patologia
19.
Hum Exp Toxicol ; 38(9): 1092-1101, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31142131

RESUMO

1,3-dichloro-2-propanol is a food-borne contaminant reported to cause liver injury. In this study, we evaluated the protective influence of caffeic acid on 1,3-dichloro-2-propanol-induced hepatotoxicity in rats. Rats were randomized into five groups (A-E). Rats received distilled water or caffeic acid (10 or 20 mg/kg body weight) for 7 days. In addition, rats were challenged with 1,3-dichloro-2-propanol on day 7. Caffeic acid prevented 1,3-dichloro-2-propanol-mediated alterations in alkaline phosphatase, alanine and aspartate aminotransferases, albumin and total bilirubin in the serum of rats. Furthermore, caffeic acid lowered superoxide ion, hydrogen peroxide and cytochrome P2E1 while increasing the activities of superoxide dismutase, catalase and glutathione S-transferase in the liver of 1,3-dichloro-2-propanol-treated rats. Caffeic acid raised the levels of nuclear erythroid-related factor 2 (Nrf-2), protein kinase A and phosphoinositide 3-kinase. Caffeic acid pretreatment annulled 1,3-dichloro-2-propanol-mediated alterations in the oxidative stress biomarkers; caspase-3, glutathione, malondialdehyde, protein carbonyl and fragmented DNA, in the liver of rats. Contrastingly, caffeic acid lowered 1,3-dichloro-2-propanol-mediated increase in the levels of nuclear factor-kappa B (NF-κB), tumour necrosis factor-α, interleukin-1ß (IL-1ß) and IL-6. In addition, caffeic acid preserved the morphological features of 1,3-dichloro-2-propanol-treated rats. Results from this study revealed that caffeic acid protects against 1,3-dichloro-2-propanol-induced hepatotoxicity by enhancing the cytoprotective enzymes through Nrf-2 while lowering inflammation through NF-κB.


Assuntos
Ácidos Cafeicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , alfa-Cloridrina/análogos & derivados , Animais , Ácidos Cafeicos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação para Baixo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Ratos , alfa-Cloridrina/toxicidade
20.
Risk Anal ; 39(3): 616-629, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30368842

RESUMO

Quantitative risk assessments for physical, chemical, biological, occupational, or environmental agents rely on scientific studies to support their conclusions. These studies often include relatively few observations, and, as a result, models used to characterize the risk may include large amounts of uncertainty. The motivation, development, and assessment of new methods for risk assessment is facilitated by the availability of a set of experimental studies that span a range of dose-response patterns that are observed in practice. We describe construction of such a historical database focusing on quantal data in chemical risk assessment, and we employ this database to develop priors in Bayesian analyses. The database is assembled from a variety of existing toxicological data sources and contains 733 separate quantal dose-response data sets. As an illustration of the database's use, prior distributions for individual model parameters in Bayesian dose-response analysis are constructed. Results indicate that including prior information based on curated historical data in quantitative risk assessments may help stabilize eventual point estimates, producing dose-response functions that are more stable and precisely estimated. These in turn produce potency estimates that share the same benefit. We are confident that quantitative risk analysts will find many other applications and issues to explore using this database.


Assuntos
Teorema de Bayes , Bases de Dados Factuais , Medição de Risco/métodos , alfa-Cloridrina/toxicidade , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Probabilidade , Linguagens de Programação , Saúde Pública , Ratos , Ratos Sprague-Dawley , Software , Incerteza , alfa-Cloridrina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA