Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150845, 2024 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-39442450

RESUMO

In mammalian cells, the Golgi apparatus undergoes fragmentation for its correct partition into two daughter cells during mitosis. Several Golgi structural proteins have been demonstrated to regulate Golgi disassembly/reassembly and spindle formation. However, it is largely unknown whether Golgi proteins mediate other major events in mitosis. Here, we report that Golgin45, a Golgi tethering protein, participates in recruiting PLK1 to the kinetochores. Upon entry into mitosis, Golgin45 binds PLK1 and a nuclear import protein, importin ß2. Enriched RanGTP at kinetochores in prometaphase and metaphase sequesters importin ß2 from Golgin45 and liberates Golgin45-PLK1 complex, which then gets further delivered to the kinetochores by Golgin45-KNL1 interaction. R375A mutation in Golgin45 that specifically disrupts Golgin45-importin ß2 interaction impairs PLK1 localization to the kinetochores, leading to mitotic arrest. Our findings reveal a novel role of a golgin tether protein in mediating Ran-dependent PLK1 enrichment on the kinetochores for proper progression of mitosis.


Assuntos
Proteínas de Ciclo Celular , Mitose , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cinetocoros/metabolismo , Sinais de Localização Nuclear/metabolismo , beta Carioferinas/metabolismo , beta Carioferinas/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética
2.
Nat Commun ; 15(1): 7887, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251571

RESUMO

Importin ß-superfamily nuclear import receptors (NIRs) mitigate mislocalization and aggregation of RNA-binding proteins (RBPs), like FUS and TDP-43, which are implicated in neurodegenerative diseases. NIRs potently disaggregate RBPs by recognizing their nuclear localization signal (NLS). However, disease-causing mutations in NLS compromise NIR binding and activity. Here, we define features that characterize the anti-aggregation activity of NIR and NLS. We find that high binding affinity between NIR and NLS, and optimal NLS location relative to the aggregating domain plays a role in determining NIR disaggregation activity. A designed FUS chimera (FUSIBB), carrying the importin ß binding (IBB) domain, is solubilized by importin ß in vitro, translocated to the nucleus in cultured cells, and downregulates the expression of endogenous FUS. In this study, we posit that guiding the mutual recognition of NLSs and NIRs will aid the development of therapeutics, illustrated by the highly soluble FUSIBB replacing the aggregation-prone endogenous FUS.


Assuntos
Regulação para Baixo , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA , beta Carioferinas , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Humanos , beta Carioferinas/metabolismo , beta Carioferinas/genética , Núcleo Celular/metabolismo , Ligação Proteica , Células HEK293 , Agregados Proteicos , Células HeLa , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Transporte Ativo do Núcleo Celular
3.
Eur J Pharmacol ; 977: 176697, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823760

RESUMO

Gastric cancer (GC) remains a global challenge due to the lack of early detection and precision therapies. Genkwadaphnin (DD1), a natural diterpene isolated from the bud of Flos GenkWa (Thymelaeaceae), serves as a Karyopherin ß1 (KPNB1) inhibitor. In this study, we investigated the anti-tumor effect of DD1 in both cell culture and animal models. Our findings reveal that KPNB1, a protein involved in nuclear import, was highly expressed in GC tissues and associated with a poor prognosis in patients. We demonstrated that DD1, alongside the established KPNB1 inhibitor importazole (IPZ), inhibited GC cell proliferation and tumor growth by enhancing both genomic and non-genomic activity of Nur77. DD1 and IPZ reduced the interaction between KPNB1 and Nur77, resulting in Nur77 cytoplasmic accumulation and triggering mitochondrial apoptosis. The inhibitors also increased the expression of the Nur77 target apoptotic genes ATF3, RB1CC1 and PMAIP1, inducing apoptosis in GC cell. More importantly, loss of Nur77 effectively rescued the inhibitory effect of DD1 and IPZ on GC cells in both in vitro and in vivo experiments. In this study, we for the first time explored the relationship between KPNB1 and Nur77, and found KPNB1 inhibition could significantly increase the expression of Nur77. Moreover, we investigated the function of KPNB1 in GC for the first time, and the results suggested that KPNB1 could be a potential target for cancer therapy, and DD1 might be a prospective therapeutic candidate.


Assuntos
Apoptose , Proliferação de Células , Diterpenos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Transdução de Sinais , Neoplasias Gástricas , beta Carioferinas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos , beta Carioferinas/metabolismo , beta Carioferinas/genética , Progressão da Doença , Masculino , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C
4.
Commun Biol ; 7(1): 532, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710927

RESUMO

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Assuntos
Resposta ao Choque Térmico , Metabolismo dos Lipídeos , Sumoilação , Ubiquitinas , Humanos , Metabolismo dos Lipídeos/genética , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Células HEK293 , Transcrição Gênica , beta Carioferinas/metabolismo , beta Carioferinas/genética
5.
Adv Biol Regul ; 91: 100989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839992

RESUMO

PTEN is a phosphoinositide lipid phosphatase and an important tumour suppressor protein. PTEN function is reduced or lost in around a third of all human cancers through diverse mechanisms, from gene deletion to changes in the function of proteins which regulate PTEN through direct protein binding. Here we present data from SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic screens to identify proteins which bind to PTEN. These experiments using untransformed epithelial cells and glioma cells identified several novel candidate proteins in addition to many previously identified PTEN binding partners and many proteins which are recognised as common false positives using these methods. From subsequent co-expression pull-down experiments we provide further evidence supporting the physical interaction of PTEN with MMP1, Myosin 18A and SHROOM3. We also performed yeast two-hybrid screens which identify the previously recognised PTEN binding partner MSP58 in addition to the nuclear import export receptor TNPO3. These experiments identify several novel candidate binding partners of PTEN and provide further data addressing the set of proteins that interact with this important tumour suppressor.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteômica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Genes Supressores de Tumor , Proteínas/genética , Neoplasias/genética , Ligação Proteica , beta Carioferinas/genética , beta Carioferinas/metabolismo
6.
Eur J Pharmacol ; 955: 175925, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473981

RESUMO

Dysregulation of nucleocytoplasmic shuttling impairs cellular homeostasis and promotes cancer development. KPNB1 is a member of karyopherin ß family, mediating the transportation of proteins from the cytoplasm to the nucleus. In a variety of cancers, the expression of KPNB1 is upregulated to facilitate tumor growth and progression. Both downregulation of KPNB1 level and inhibition of KPNB1 activity prevent the entry of cancer-related transcription factors into the nucleus, subsequently suppressing the proliferation and metastasis of cancer cells. Currently, five KPNB1 inhibitors have been reported and exhibited good efficacy against cancer. This paper provides an overview of the role and mechanism of KPNB1 in different cancers and KPNB1-targeted anticancer compounds which hold promise for the future.


Assuntos
Neoplasias , beta Carioferinas , Humanos , Transporte Ativo do Núcleo Celular , beta Carioferinas/genética , beta Carioferinas/metabolismo , Regulação para Baixo , Núcleo Celular/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
7.
Endocrine ; 82(1): 96-107, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37166548

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) is the main type of thyroid cancer (THCA). Despite the good prognosis, some PTC patients may deteriorate into more aggressive disease, leading to poor survival. Our study aimed to explore the role of microRNA (miR)-130a-3p in regulating PTC. METHODS: After transfection with miR-130a-3p-mimic, OE-PSME3, or miR-130a-3p-mimic + OE-KPNB1 in PTC cells (TPC-1), CCK-8, Transwell, scratch, and flow cytometry experiments were performed to analyze TPC-1 cell proliferation, invasion, migration, and apoptosis. Western blotting was used to detect proliferation or invasion-related protein markers (PCNA, E-cadherin, and N-cadherin). The RNA22 database, dual-luciferase reporter assay, and RNA pull-down assay were applied for the prediction and verification of the binding site between miR-130a-3p and PSME3. Pan-cancer software identified a positive correlation between PSME3 and KPNB1 in THCA. Co-immunoprecipitation was utilized to verify the interaction of PSME3 with KPNB1. Nude mice were transplanted with TPC-1 cells overexpressing miR-130a-3p. The tumors were isolated for detection of the expression of miR-130a-3p, PSME3, KPNB1, Ki-67, and CD31. RESULTS: miR-130a-3p was lowly expressed in PTC cell lines. Upregulation of miR-130a-3p repressed the expression of PSME3 and KPNB1 and reduced the malignancy of TPC-1 cells in vitro, shown by inhibited cell proliferation, invasion, migration, and the expression of PCNA and N-cadherin. Also, overexpressed miR-130a-3p inhibited the growth of xenograft tumors in nude mice. miR-130a-3p bound to PSME3 which interacted with KPNB1. CONCLUSION: miR-130a-3p impedes the progression of PTC by downregulating PSME3/KPNB1.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , beta Carioferinas/genética , beta Carioferinas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
8.
Virol J ; 20(1): 61, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016419

RESUMO

A group of DNA viruses called parvoviruses that have significant effects on cancer therapy and genetic engineering applications. After passing through the cell membrane to reach the cytosol, it moves along the microtubule toward the nuclear membrane. The nuclear localization signal (NLS) is recognized by importin-beta (impß) and other proteins from the complex outside the nuclear membrane and binds to enter the nucleus via the nuclear pore complex (NPC). There are two main pathways for viruses to enter the nucleus. The classical pathway is through the interaction of imp α and impß with NLS via NPC. The other is the NPC mediated by the combination of impß and it. While the capsid is introduced into the nucleus through classical nuclear transduction, there is also a transient nuclear membrane dissolution leading to passive transport into the nucleus, which has been proposed in recent years. This article mainly discusses several nuclear entry pathways and related proteins, providing a reference for subsequent research on viral entry pathways.


Assuntos
Infecções por Parvoviridae , Parvovirus , Humanos , Sinais de Localização Nuclear/genética , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , alfa Carioferinas/metabolismo
9.
J Cereb Blood Flow Metab ; 43(7): 1194-1205, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883376

RESUMO

The association of exosomal RNA profiling and pathogenesis of moyamoya disease (MMD) and intracranial Atherosclerotic disease (ICAD) is unknown. In this study, we investigated the RNA profiles of sEV (small extracellular vesicles)/exosomes in patients with MMD and ICAD. Whole blood samples were collected from 30 individuals, including 10 patients with MMD, 10 patients with ICAD, and 10 healthy individuals. Whole transcriptome analysis was performed using the GeneChip WT Pico Reagent kit. Transcriptional correlation was verified using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The association between functional dysregulation and candidate RNAs was studied in vitro. In total, 1,486 downregulated and 2,405 upregulated RNAs differed significantly between patients with MMD and healthy controls. Differential expression of six circRNAs was detected using qPCR. Among these significantly differentially expressed RNAs, IPO11 and PRMT1 circRNAs were upregulated, whereas CACNA1F circRNA was downregulated. This is the first study showing that the differential expression of exosomal RNAs associated with MMD pathogenesis, such as overexpression of IPO11 and PRMT1 circRNAs, may be related to angiogenesis in MMD. The downregulation of CACNA1F circRNA may be related to vascular occlusion. These results propose the utility of exosomal RNAs as biological markers in MMD.


Assuntos
Exossomos , Doença de Moyamoya , Humanos , RNA/genética , RNA/metabolismo , RNA Circular/genética , Exossomos/genética , Exossomos/metabolismo , Doença de Moyamoya/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , beta Carioferinas/genética
10.
Lung Cancer ; 178: 66-74, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806896

RESUMO

OBJECTIVES: De novo mesenchymal-to-epithelial transition (MET) gene fusions in non-small cell lung cancer (NSCLC) are a promising target for MET tyrosine kinase inhibitors (TKIs). We aimed to examine the response to targeted therapy with MET TKIs and resistance mechanisms in de novo MET fusion-positive NSCLC as these have not been comprehensively explored. MATERIALS AND METHODS: We examined the MET fusions in 4,429 patients with advanced-stage NSCLC using targeted next-generation sequencing and validated the results using RT-PCR. We analyzed cellular models harboring MET fusions and established a patient-derived organoid (PDO) model. RESULTS: We identified 13 (0.29 %, 13/4429) patients with de novo MET fusions and found EPHB4, THAP5, TNPO3, and DST as novel MET fusion partners. The most common concomitant gene with MET fusions was TP53 mutations. Among 12 patients receiving MET TKI treatment, two achieved stable disease, six achieved partial response, and four underwent progressive disease. An in vitro study showed that EPHB4-MET is a functional driver gene. MET inhibitors significantly inhibited the proliferation and phosphorylation of downstream STAT3, AKT, and ERK1/2 in EPHB4-MET overexpressing cells. Acquired MET D1228H/N or D1246N mutations were found in patients harboring MET fusions after acquiring resistance to MET TKIs. Tivantinib showed optimal suppression efficacy in a PDO model with an acquired MET D1228N mutation. CONCLUSION: MET fusions occur in a rare subset of patients with NSCLC and represent a promising therapeutic target. MET secondary mutations D1228H/N or D1246N present the potential resistance mechanisms of MET inhibitors in patients with de novo MET fusions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , beta Carioferinas/genética
11.
J Biol Chem ; 299(2): 102806, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529289

RESUMO

Karyopherin-ß2 (Kapß2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapß2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapß2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapß2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapß2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapß2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapß2 recapitulate all salient features of Kapß2 activity. By contrast, Kapß2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapß2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.


Assuntos
Chaperonas Moleculares , Fragmentos de Peptídeos , Príons , Proteína FUS de Ligação a RNA , beta Carioferinas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo , Linhagem Celular , Dependovirus/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/terapia , Técnicas In Vitro , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Príons/química , Príons/metabolismo , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/terapia , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligação Proteica
12.
Cell Death Dis ; 13(8): 697, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945192

RESUMO

Glioma stem cells (GSCs) are a special kind of cells in GBM showing tumor initiation, self-renewal, and multi-lineage differentiation abilities. Finding novel circRNAs related to GSCs is of great significance for the study of glioma. qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of circKPNB1, SPI1, DGCR8, and TNF-α. The expression of these molecules in GSCs was regulated by lentiviral-based infection. RNA immunoprecipitation assay, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to study the direct regulation mechanisms among these molecules. All the MTS, EDU, transwell, neurosphere formation assays, ELDA assays, and xenograft experiments were used to detect the malignant phenotype of GSCs. We found a novel circRNA circKPNB1 was overexpressed in GBM and associated with GBM patients' poor prognosis. CircKPNB1 overexpression can promote the cell viabilities, proliferation, invasion, neurospheres formation abilities, and stemness of GSCs. Mechanistically, circKPNB1 regulates the protein stability and nuclear translocation of SPI1. SPI1 promotes the malignant phenotype of GSCs via TNF-α mediated NF-κB signaling. SPI1 can also transcriptionally upregulate DGCR8 expression, and the latter can maintain the stability of circKPNB1 and forms a positive feedback loop among DGCR8, circKPNB1 and SPI1. Our study found circKPNB1 was a novel oncogene in GBM and of great significance in the diagnosis and prognosis prediction of GBM and maybe a novel target for molecular targeted therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Transdução de Sinais , beta Carioferinas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/patologia , Humanos , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Clin Transl Med ; 12(7): e994, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35876041

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumour of the urinary tract. The major causes of poor prognosis are the lack of early diagnosis and metastasis. Accumulating research reveals that circular RNAs (circRNAs) can play key roles in the development and the progression of cancer. However, the role of circRNAs in ccRCC is still uncertain. METHODS: The circRNAs microarray (n = 4) was performed to investigate the circRNAs with differential expression in ccRCC tissues. The candidate circRNA was selected based on the cut-off criteria, such as circRNA expression abundance, circRNA size and the design of divergent primers. The circ-transportin-3 (TNPO3) levels in ccRCC tissues were tested by quantitative real-time (qRT)-PCR (n = 110). The characteristics and subcellular localization of circ-TNPO3 were identified via RNase R assay, qRT-PCR and fluorescence in situ hybridization (FISH). Then, we explored the biological roles of circ-TNPO3 in ccRCC via the function experiments in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, bioinformatic analysis, RNA-FISH assays and rescue assays were applied to validate the interactions between circ-TNPO3, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and serpin family H member 1 (SERPINH1) to uncover the underlying molecular mechanisms of circ-TNPO3. RESULTS: We detected the obvious downregulation of circ-TNPO3 in ccRCC compared to matched adjacent normal tissues (n = 110). The lower circ-TNPO3 expression was found in ccRCC patients with distant metastasis, higher World Health Organization/International Society of Urologic Pathologists (WHO/ISUP) grade and more advanced tumour T stage. In vitro and in vivo, circ-TNPO3 significantly suppressed the proliferation and migration of ccRCC cells. Mechanistically, we elucidated that circ-TNPO3 directly bound to IGF2BP2 protein and then destabilized SERPINH1 mRNA. Moreover, IGF2BP2/SERPINH1 axis was responsible for circ-TNPO3's function of inhibiting ccRCC metastasis. Epithelial splicing regulatory protein 1 (ESRP1) was probably involved in the biogenesis of circ-TNPO3. CONCLUSIONS: Circ-TNPO3 can suppress ccRCC progression and metastasis via directly binding to IGF2BP2 protein and destabilizing SERPINH1 mRNA. Circ-TNPO3 may act as a potential target for ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Hibridização in Situ Fluorescente , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , RNA , RNA Circular/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
14.
BMC Cancer ; 22(1): 785, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850701

RESUMO

BACKGROUND: More than twenty years after its discovery, the role of the importin beta superfamily member Ran GTP-binding protein (RanBP) 17 is still ill defined. Previously, we observed notable RanBP17 RNA expression levels in head and neck squamous cell carcinoma (HNSCC) cell lines with disruptive TP53 mutations. METHODS: We deployed HNSCC cell lines as well as cell lines from other tumor entities such as HCT116, MDA-MB-231 and H460, which were derived from colon, breast and lung cancers respectively. RNAi was used to evaluate the effect of RanBP17 on cell proliferation. FACS analysis was used for cell sorting according to their respective cell cycle phase and for BrdU assays. Immunocytochemistry was deployed for colocalization studies of RanBP17 with Nucleolin and SC35 (nuclear speckles) domains. TCGA analysis was performed for prognostic assessment and correlation analysis of RanBP17 in HNSCC patients. RESULTS: RNAi knockdown of RanBP17, significantly reduced cell proliferation in HNSCC cell lines. This effect was also seen in the HNSCC unrelated cell lines HCT116 and MDA-MB-231. Similarly, inhibiting cell proliferation with cisplatin reduced RanBP17 in keratinocytes but lead to induction in tumor cell lines. A similar observation was made in tumor cell lines after treatment with the EGFR kinase inhibitor AG1478. In addition to previous reports, showing colocalization of RanBP17 with SC35 domains, we observed colocalization of RanBP17 to nuclear bodies that are distinct from nucleoli and SC35 domains. Interestingly, for HPV positive but not HPV negative HNSCC, TCGA data base analysis revealed a strong positive correlation of RanBP17 RNA with patient survival and CDKN2A. CONCLUSIONS: Our data point to a role of RanBP17 in proliferation of HNSCC and other epithelial cells. Furthermore, RanBP17 could potentially serve as a novel prognostic marker for HNSCC patients. However, we noted a major discrepancy between RanBP17 RNA and protein expression levels with the used antibodies. These observations could be explained by the presence of additional RanBP17 splice isoforms and more so of non-coding circular RanBP17 RNA species. These aspects need to be addressed in more detail by future studies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/farmacologia
15.
Cell Death Dis ; 13(7): 633, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864095

RESUMO

Uncontrolled growth, distant metastasis and chemoresistance are critical characteristics of pancreatic ductal adenocarcinoma (PDAC), and they result in high mortality; however, the mechanisms triggering these effects have not been fully investigated. In this study, we analysed a dataset in the Cancer Genome Atlas (TCGA) and identified PCDH1, a rarely studied transmembrane protein, as a novel prognostic marker in PDAC patients. We demonstrated that PCDH1 expression was upregulated in PDAC tissues, and its expression levels were associated with the depth of tumour invasion and lymph node metastasis. Patients with high PCDH1 levels showed poor overall survival (OS). We also investigated the biological significance of PCDH1 in PDAC cell growth, metastasis, and side population (SP) phenotype acquisition and explored the internal molecular mechanisms of PCDH1 action. Our results demonstrated that PCDH1 enhanced p65 nuclear localization by interacting with KPNB1, a well-characterized nuclear transporter, thereby activating the NF-κB signalling pathway and increasing its functional effects during PDAC progression. Hence, our results indicate that PCDH1 can be used as a negative prognostic marker and may be a potential therapeutic target for PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Protocaderinas , beta Carioferinas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Protocaderinas/genética , beta Carioferinas/genética , Neoplasias Pancreáticas
16.
Zhonghua Bing Li Xue Za Zhi ; 51(6): 518-523, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35673723

RESUMO

Objective: To explore the clinicopathological features, immunophenotype and molecular genetic characteristics of malignant solitary fibrous tumor (MSFT). Methods: Seven cases of MSFT were collected from the First Affiliated Hospital of Zhengzhou University from July 2018 to December 2020. Immunohistochemistry, RNA-based NGS and DNA-based NGS were performed. Results Among the 7 patients, there were 5 males and 2 females with a median age of 53 years (37-69 years). Two tumors located at skull base, and one in the tentorium of cerebellum, parietal occipital region, occipital area, chest and buttock respectively. The maximum diameter of the tumor was 2.5-20.0 cm. Microscopically, typical hemangiopericomatoid structures were noted; the tumor was cellular, fusiform or oval, very pleomorphic, with necrosis and high mitotic figures (>4/10 HPF). In some cases, classical solitary fibrous tumor morphology and dedifferentiated region were observed. Immunohistochemically, the tumor was positive for CD34 (6/7), STAT6 (7/7), bcl-2 (7/7), but negative for S-100 (7/7); CKpan or EMA was positive to varying degrees; mutated p53 was noted (3/7); Ki-67 positive index was more than 10%. NAB2-STAT6 gene fusion was typically detected in all the 7 cases. In 4 cases, ZNF415-FGFR1, COPG1-MET, IPO11-LRRC70_ncRNA-PLAG1 and Clorf198-CD274 (PD-L1) gene fusions were also detected. NOTCH1 mutation was found in 7 cases and TP53 mutation in 4 cases. TERT promoter mutations were not detected in all the cases. Conclusions: MSFT is rare and needs to be differentiated from many other spindle cell tumors. Especially when tumors express epithelial markers, they are easily misdiagnosed as sarcomatoid carcinoma and synovial sarcoma, etc. Immunohistochemistry and molecular detection of NAB2-STAT6 gene fusion have important diagnostic values. NOTCH1 and TP53 mutations may be associated with the progression of MSFT. Some patients have FGFR1 gene fusion and MET gene fusion, which may be potential therapeutic targets.


Assuntos
Fibrossarcoma , Tumores Fibrosos Solitários , Adulto , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Feminino , Fusão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Biologia Molecular , Fator de Transcrição STAT6/análise , Fator de Transcrição STAT6/genética , Tumores Fibrosos Solitários/química , beta Carioferinas/genética
17.
Leukemia ; 36(5): 1283-1295, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152270

RESUMO

AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin ß family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.


Assuntos
Leucemia Mieloide Aguda , beta Carioferinas , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
18.
Mol Cancer ; 20(1): 132, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649567

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. Liver cancer initiating cells also called cancer stem cells (CSCs) play a critical role in resistance against typical therapy and high tumor-initiating potential. However, the role of the novel circular RNA (circRNA) circIPO11 in the maintenance of liver cancer initiating cells remains elusive. METHODS: CircRNAs highly conserved in humans and mice were identified from 3 primary HCC samples by circRNA array. The expression and function of circIPO11 were further evaluated by Northern blot, limiting dilution xenograft analysis, chromatin isolation by RNA purification-PCR assay (ChIRP) and HCC patient-derived tumor cells (PDC) models. CircIpo11 knockout (KO) mice were generated by a CRISPR/Cas9 technology. RESULTS: CircIPO11 is highly expressed in HCC tumor tissues and liver CSCs. CircIPO11 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, circIPO11 recruits TOP1 to GLI1 promoter to trigger its transcription, leading to the activation of Hedgehog signaling. Moreover, GLI1 is also highly expressed in HCC tumor tissues and liver CSCs, and TOP1 expression levels positively correlate with the metastasis, recurrence and survival of HCC patients. Additionally, circIPO11 knockout in mice suppresses the progression of chemically induced liver cancer development. CONCLUSION: Our findings reveal that circIPO11 drives the self-renewal of liver CSCs and promotes the propagation of HCC via activating Hedgehog signaling pathway. Antisense oligonucleotides (ASOs) against circIPO11 combined with TOP1 inhibitor camptothecin (CPT) exert synergistic antitumor effect. Therefore, circIPO11 and the Hedgehog signaling pathway may provide new potential targets for the treatment of HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Autorrenovação Celular/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Circular , beta Carioferinas/genética , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Transdução de Sinais
19.
Nat Commun ; 12(1): 5301, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489423

RESUMO

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteína C9orf72/química , Peptídeos/química , beta Carioferinas/química , Sítios de Ligação , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Transição de Fase , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta Carioferinas/antagonistas & inibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo
20.
Cancer Lett ; 515: 14-27, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044070

RESUMO

Karyopherin-ß proteins are critically involved in cancer progression and have been reported as potential biomarkers and therapeutic targets for tumor treatment. However, TNPO1, as an important karyopherin-ß family member, underlying functional roles in cancers remain largely unclear. In this study, under integrated gene-expression profiling screen of karyopherin-ß in gynecologic cancer, we identify TNPO1 as a pivotal contributor to the gynecologic cancer progression. Remarkably, ARID1A-deficient gynecologic cancer cells are specifically vulnerable to the genetic perturbations of TNPO1 in vitro and in vivo. Mechanistically, TNPO1 is selectively responsible for nuclear import of ARID1B, which is a synthetic lethal target in ARID1A-inactivating mutation cancers. Furthermore, TNPO1 or ARID1B knockdown changes chromatin accessibility that results in loss of H3K4me1 and H3K27ac marker, diminishing activated transcription factor of the AP-1 family, and inactivating the PI3K/AKT signaling pathway by reducing growth pathway genes expression including PIK3CA and FGFR2. Together, this work indicates that the oncogenic function of TNPO1 and maybe represent a novel therapeutic strategy to treat ARID1A-deficient gynecologic cancer.


Assuntos
Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Neoplasias dos Genitais Femininos/genética , Fatores de Transcrição/genética , beta Carioferinas/genética , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias dos Genitais Femininos/patologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA