Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Cell Death Dis ; 15(5): 358, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777849

RESUMO

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of ß-arrestin1 (ß-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/ß-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin ß1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or ß-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/ß-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Podossomos , beta-Arrestina 1 , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Podossomos/metabolismo , Endotelina-1/metabolismo , Metástase Neoplásica , Receptor de Endotelina A/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Movimento Celular , Proliferação de Células , Animais , Fibroblastos/metabolismo , Invasividade Neoplásica
2.
Int Immunopharmacol ; 130: 111676, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367465

RESUMO

ß-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage ß-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid ß-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage ß-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of ß-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of ß-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid ß-arrestin-1 alleviated disease severity, while knocking out the expression of ß-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of ß-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of ß-arrestin-1 under TNF-α challenge. ß-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage ß-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Nitrilas , Sulfonas , Animais , Camundongos , NF-kappa B/metabolismo , Colite Ulcerativa/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapêutico , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Citocinas/metabolismo , Macrófagos/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354957

RESUMO

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/metabolismo , beta-Arrestinas/metabolismo , Receptores de Canabinoides/metabolismo , beta-Arrestina 1/metabolismo , Ligantes , Proteínas de Ligação ao GTP/metabolismo , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
4.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38152023

RESUMO

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
5.
Biochem Pharmacol ; 218: 115924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37972874

RESUMO

Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.


Assuntos
Canabidiol , Canabidiol/farmacologia , Receptores de Canabinoides/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Dronabinol , Receptor CB1 de Canabinoide/metabolismo , Agonistas de Receptores de Canabinoides
6.
Cell Rep ; 42(11): 113326, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897727

RESUMO

Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease ß-arrestin 2 (ARRB2) levels in human islets. In mouse ß cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.


Assuntos
Células Secretoras de Insulina , Camundongos , Humanos , Animais , Células Secretoras de Insulina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestina 1/metabolismo , Glucose/metabolismo
7.
Int Immunopharmacol ; 125(Pt A): 111085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866313

RESUMO

Autophagy in atherosclerotic plaque macrophage contributes to the alleviation of atherosclerosis through the promotion of lipid metabolism. ß-arrestins are multifunctional proteins participating various kinds of cellular signaling pathways. Here we aimed to determine the role of ß-arrestin-1, an important member of ß-arrestin family, in atherosclerosis, and whether autophagy was involved in this process. ApoE-/-ß-arrestin-1fl/flLysM-Cre mice were created through bone marrow transplantation for the atherosclerosis model with conditional myeloid knocking out ß-arrestin-1. Bone marrow-derived macrophages (BMDMs) were used for the in vitro studies. Oil red O staining was used to detect the lesional area. F4/80, Masson trichrome and picro-Sirius red staining were applied for the determination of plaque stability. Real-time PCR was used for the detection of levels of lipid metabolism-related receptors. Electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy level. We found that ß-arrestin-1 was highly increased in expression in plaque macrophage on the occurrence of atherosclerosis. Conditional myeloid knocking out ß-arrestin-1 largely promotes plaque formation and vulnerability. In murine macrophage with lipid loading, knocking down ß-arrestin-1 enhanced foam cell formation and levels of plasma and cellular cholesterol, while overexpressing ß-arrestin-1 led to the opposite effects. The alleviative effects induced by macrophage ß-arrestin-1 in atherosclerosis were involved in autophagy, based on the reduction of autophagy level with the knocking down of macrophage ß-arrestin-1 and administration of autophagy inhibitors which largely attenuated the decreasing effect on foam cell formation. Our results demonstrated for the first time that macrophage ß-arrestin-1 protected against atherosclerosis through the induction of autophagy.


Assuntos
Aterosclerose , Placa Aterosclerótica , beta-Arrestina 1 , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Autofagia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Macrófagos/metabolismo
8.
J Biol Chem ; 299(11): 105293, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774973

RESUMO

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Assuntos
Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Estrutura Terciária de Proteína , Isoformas de Proteínas , Ativação Enzimática/genética
9.
Mol Cancer Res ; 21(12): 1288-1302, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584671

RESUMO

Constraints on the p53 tumor suppressor pathway have long been associated with the progression, therapeutic resistance, and poor prognosis of melanoma, the most aggressive form of skin cancer. Likewise, the insulin-like growth factor type 1 receptor (IGF1R) is recognized as an essential coordinator of transformation, proliferation, survival, and migration of melanoma cells. Given that ß-arrestin (ß-arr) system critically governs the anti/pro-tumorigenic p53/IGF1R signaling pathways through their common E3 ubiquitin-protein ligase MDM2, we explore whether unbalancing this system downstream of IGF1R can enhance the response of melanoma cells to chemotherapy. Altering ß-arr expression demonstrated that both ß-arr1-silencing and ß-arr2-overexpression (-ß-arr1/+ß-arr2) facilitated nuclear-to-cytosolic MDM2 translocation accompanied by decreased IGF1R expression, while increasing p53 levels, resulting in reduced cell proliferation/survival. Imbalance towards ß-arr2 (-ß-arr1/+ß-arr2) synergizes with the chemotherapeutic agent, dacarbazine, in promoting melanoma cell toxicity. In both 3D spheroid models and in vivo in zebrafish models, this combination strategy, through dual IGF1R downregulation/p53 activation, limits melanoma cell growth, survival and metastatic spread. In clinical settings, analysis of the TCGA-SKCM patient cohort confirms ß-arr1-/ß-arr2+ imbalance as a metastatic melanoma vulnerability that may enhance therapeutic benefit. Our findings suggest that under steady-state conditions, IGF1R/p53-tumor promotion/suppression status-quo is preserved by ß-arr1/2 homeostasis. Biasing this balance towards ß-arr2 can limit the protumorigenic IGF1R activities while enhancing p53 activity, thus reducing multiple cancer-sustaining mechanisms. Combined with other therapeutics, this strategy improves patient responses and outcomes to therapies relying on p53 or IGF1R pathways. IMPLICATIONS: Altogether, ß-arrestin system bias downstream IGF1R is an important metastatic melanoma vulnerability that may be conductive for therapeutic benefit.


Assuntos
Arrestinas , Melanoma , Animais , Humanos , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/metabolismo , beta-Arrestina 1/metabolismo , Isoformas de Proteínas/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , beta-Arrestina 2/metabolismo , Linhagem Celular Tumoral , Receptor IGF Tipo 1/metabolismo
10.
Nat Commun ; 14(1): 3328, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286565

RESUMO

The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. ß-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A ß-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Neurotensina , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Arrestina/metabolismo
11.
Pharmacol Rev ; 75(5): 854-884, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37028945

RESUMO

The two ß-arrestins, ß-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both ß-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how ß-arrestins bind to activated GPCRs and downstream effector proteins. Studies with ß-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by ß-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on ß-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of ß-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific ß-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two ß-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with ß-arrestin mutant mice and cultured cells, complemented by novel insights into ß-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific ß-arrestin functions.


Assuntos
Arrestinas , Transdução de Sinais , Camundongos , Animais , beta-Arrestinas/metabolismo , Arrestinas/química , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo
12.
Neuroscience ; 519: 120-130, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36796753

RESUMO

The cytoplasmic multifunctional adaptor protein ß-arrestin 2 (Arrb2) is involved in the occurrence of various nervous system diseases, such as Alzheimer's disease and Parkinson's disease. Previous laboratory studies have shown that the expression and function of the Arrb2 gene was increased in valproic acid-induced autistic mice models. However, few reports have examined the possible role of Arrb2 in the pathogenesis of autism spectrum disorder. Therefore, Arrb2-deficient (Arrb2-/-) mice were further studied to uncover the physiological function of Arrb2 in the nervous system. In this study, we found that Arrb2-/- mice had normal behavioral characteristics compared with wild-type mice. The autophagy marker protein LC3B was decreased in the hippocampus of Arrb2-/- mice compared to wild-type mice. Western blot analysis revealed that deletion of Arrb2 caused hyperactivation of Akt-mTOR signaling in the hippocampus. In addition, abnormal mitochondrial dysfunction was observed in Arrb2-/- hippocampal neurons, which was characterized by a reduction in mitochondrial membrane potential and adenosine triphosphate production and an increase in reactive oxygen species levels. Therefore, this study elucidates the interaction between Arrb2 and the Akt-mTOR signaling pathway and provides insights into the role of Arrb2 in hippocampal neuron autophagy.


Assuntos
Transtorno do Espectro Autista , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , beta-Arrestina 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transtorno do Espectro Autista/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia/fisiologia , Hipocampo/metabolismo , beta-Arrestina 2/genética
13.
Cell Death Dis ; 14(1): 73, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717550

RESUMO

Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5ß1 integrin (Intα5ß1) activity. Although the binding of Intα5ß1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5ß1 activation and accelerates tumor cells toward invasive disease, involving the protein ß-arrestin1 (ß-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intß1 and downstream FAK/paxillin activation. Mechanistically, ß-arr1 directly interacts with talin1 and Intß1, promoting talin1 phosphorylation and its recruitment to Intß1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/ß-arr1-driven Intα5ß1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5ß1, ATN161, inhibits ET-1-driven Intα5ß1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intß1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/ß-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/ß-arr1 regulates Intα5ß1 functional pathway.


Assuntos
Integrina alfa5beta1 , Neoplasias Ovarianas , Receptor de Endotelina A , Talina , beta-Arrestina 1 , Feminino , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Endotelina-1/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo
14.
Mol Cancer Res ; 21(3): 214-227, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573960

RESUMO

ABSTRACT: System paclitaxel-based chemotherapy is the first-line treatment regimen of defense against breast cancer, but inherent or acquired chemotherapy resistance remains a major obstacle in breast cancer therapy. Elucidating the molecular mechanism of chemoresistance is essential to improve the outcome of patients with breast cancer. Here, we demonstrate that intraflagellar transport 20 (IFT20) is positively associated with shorter relapse-free survival in patients with system paclitaxel-based chemotherapy. High-expressed IFT20 in breast cancer cells increases resistance to cell death upon paclitaxel treatment; in contrast, IFT20 knockdown enhances apoptosis in breast cancer cells in response to paclitaxel. Mechanistically, IFT20 triggers ß-arrestin-1 to bind with apoptosis signal-regulating kinase 1 (ASK1) and promotes the ubiquitination of ASK1 degradation, leading to attenuating ASK1 signaling and its downstream JNK cascades, which helps cells to escape from cell death during paclitaxel treatment. Our results reveal that IFT20 drives paclitaxel resistance through modulating ASK1 signaling and identifies IFT20 as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer. IMPLICATIONS: IFT20 drives paclitaxel resistance through modulating ASK1 signaling and IFT20 may act as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapêutico , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas de Transporte
15.
Drug Alcohol Depend ; 240: 109653, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209675

RESUMO

BACKGROUND: Understanding mechanisms associated with depressed smokers is a relevant question given that tobacco use disorder with comorbid major depressive disorder (MDD) has worse outcomes. The beta-arrestin 1 (ARRB1) pathway is a suggested biomarker for major depressive disorder and is involved in both antidepressant mechanism of action and tobacco addiction. We aimed to assess the association between smoking and peripheral ARRB1 expression in participants who exhibited MDD with current major depressive episode (MDE). BASIC PROCEDURES: 61 participants who exhibited MDD with current MDE with a score above 17 on the Hamilton Depression Rating Scale (HDRS), and who were free from antidepressant drug treatment for at least one month before inclusion, were assessed for tobacco use and cigarettes/day. Peripheral ARRB1 expression was assessed by sandwich ELISA from peripheral blood mononuclear cells (PBMC). FINDINGS: In participants who exhibited MDD with current MDE, peripheral ARRB1 expression was lower in tobacco users (n = 20, mean (SD) 4.795 (1.04) ng/mg of total protein) compared to non-tobacco users (n = 41, mean (SD) 6.19 (1.56) ng/mg; FDR p-value= 0.0044). Higher daily tobacco consumption was associated with lower peripheral ARRB1 expression (r = -0.314; FDR p-value=0.037). CONCLUSIONS: Tobacco consumption should be considered in studies of ARRB1 in participants who exhibit MDD. ARRB1 signaling is a new target of interest with a potential clinical implication for people with MDD and tobacco use disorder.


Assuntos
Transtorno Depressivo Maior , Tabagismo , beta-Arrestina 1 , Humanos , Antidepressivos/uso terapêutico , beta-Arrestina 1/sangue , beta-Arrestina 1/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Leucócitos Mononucleares/metabolismo , Uso de Tabaco , Tabagismo/metabolismo
16.
J Neuroinflammation ; 19(1): 240, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183107

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a prevalent and devastating psychiatric illness. Unfortunately, the current therapeutic practice, generally depending on the serotonergic system for drug treatment is unsatisfactory and shows intractable side effects. Multiple evidence suggests that dopamine (DA) and dopaminergic signals associated with neuroinflammation are highly involved in the pathophysiology of depression as well as in the mechanism of antidepressant drugs, which is still in the early stage of study and well worthy of investigation. METHODS: We established two chronic stress models, including chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), to complementarily recapitulate depression-like behaviors. Then, hippocampal tissues were used to detect inflammation-related molecules and signaling pathways. Pathological changes in depressive mouse hippocampal astrocytes were examined by RNA sequencing. After confirming the dopamine receptor 2 (Drd2)/ß-arrestin2 signaling changes in the depressive mice brain, we then established the depressive mouse model using the ß-arrestin2 knockout mice or administrating the ß-arrestin2-biased Drd2 agonist to investigate the roles. Label-free mass spectrometry was used to identify the ß-arrestin2-binding proteins as the underlying mechanisms. We modeled neuroinflammation with interleukin-6 (IL-6) and corticosterone treatment and characterized astrocytes using multiple methods including cell viability assay, flow cytometry, and confocal immunofluorescence. RESULTS: Drd2-biased ß-arrestin2 pathway is significantly changed in the progression of depression, and genetic deletion of ß-arrestin2 aggravates neuroinflammation and depressive-like phenotypes. Mechanistically, astrocytic ß-arrestin2 retains STAT3 in the cytoplasm by structural combination with STAT3, therefore, inhibiting the JAK-STAT3 pathway-mediated inflammatory activation. Furtherly, pharmacological activation of Drd2/ß-arrestin2 pathway by UNC9995 abolishes the inflammation-induced loss of astrocytes and ameliorates depressive-like behaviors in mouse model for depression. CONCLUSIONS: Drd2/ß-arrestin2 pathway is a potential therapeutic target for depression and ß-arrestin2-biased Drd2 agonist UNC9995 is identified as a potential anti-depressant strategy for preventing astrocytic dysfunctions and relieving neuropathological manifestations in mouse model for depression, which provides insights for the therapy of depression.


Assuntos
Astrócitos , Transtorno Depressivo Maior , Animais , Astrócitos/metabolismo , Corticosterona/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Receptores de Dopamina D2/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(40): e2123231119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161910

RESUMO

ß-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.


Assuntos
Piruvato Quinase , Neoplasias Gástricas , beta-Arrestina 1 , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Fator de Transcrição E2F1/metabolismo , Glicólise/fisiologia , Humanos , Isoformas de Proteínas/genética , Piruvato Quinase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
18.
J Cell Physiol ; 237(10): 3717-3733, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908197

RESUMO

ß-Arrestins are ubiquitously expressed intracellular proteins with many functions which interact directly and indirectly with a wide number of cellular partners and mediate downstream signaling. Originally, ß-arrestins were identified for their contribution to GPCR desensitization to agonist-mediated activation, followed by receptor endocytosis and ubiquitylation. However, current investigations have now recognized that in addition to GPCR arresting (hence the name arrestin). ß-Arrestins are adaptor proteins that control the recruitment, activation, and scaffolding of numerous cytoplasmic signaling complexes and assist in G-protein receptor signaling, thus bringing them into close proximity. They have participated in various cellular processes such as cell proliferation, migration, apoptosis, and transcription via canonical and noncanonical pathways. Despite their significant recognition in several physiological processes, these activities are also involved in the onset and progression of various cancers. This review delivers a concise overview of the role of ß-arrestins with a primary emphasis on the signaling processes which underlie the mechanism of ß-arrestins in the onset of cancer. Understanding these processes has important implications for understanding the therapeutic intervention and treatment of cancer in the future.


Assuntos
Arrestinas , Neoplasias , Arrestinas/genética , Arrestinas/metabolismo , Ciclo Celular , Proteínas de Ligação ao GTP/metabolismo , Neoplasias/genética , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858343

RESUMO

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Fatores de Transcrição , Ácidos e Sais Biliares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Ácidos Cólicos/farmacologia , Microscopia Crioeletrônica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , beta-Arrestina 1/metabolismo
20.
Cell Signal ; 95: 110337, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461901

RESUMO

G protein-coupled receptor kinase type 2 (GRK2) and ß-arrestin2 are representative proteins that regulate the transduction and trafficking of G protein-coupled receptor (GPCR) signaling. The kinase GRK2 and the multifunctional scaffolding protein ß-arrestin2 are key integrated signaling nodes in various biological processes, and both of them regulate cell proliferation and promote cell invasion and migration. GRK2/ß-arrestin2 play multiple roles in the pathological mechanisms of a wide range of diseases including heart failure, cancer, and inflammatory diseases. This review summarizes the roles of GRK2/ß-arrestin2 in immune cell function and focuses on the pathological implications of GRK2/ß-arrestin2 in various inflammatory diseases.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Transdução de Sinais , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Inflamação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA