Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105293, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774973

RESUMO

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Assuntos
Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Estrutura Terciária de Proteína , Isoformas de Proteínas , Ativação Enzimática/genética
2.
Basic Clin Pharmacol Toxicol ; 133(4): 331-341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056198

RESUMO

GPR56/ADGRG1 is an adhesion G protein-coupled receptor (GPCR) and mutations on this receptor cause cortical malformation due to the over-migration of neural progenitor cells on brain surface. At pial surface, GPR56 interacts with collagen III, induces Rho-dependent activation through Gα12/13 and inhibits the neuronal migration. In human glioma cells, GPR56 inhibits cell migration through Gαq/11 -dependent Rho pathway. GPR56-tetraspanin complex is known to couple Gαq/11 . GPR56 is an aGPCR that couples with various G proteins and signals through different downstream pathways. In this study, bilateral frontoparietal polymicrogyria (BFPP) mutants disrupting GPR56 function but remaining to be expressed on plasma membrane were used to study receptor signalling through Gα12 , Gα13 and Gα11 with BRET biosensors. GPR56 showed coupling with all three G proteins and activated heterotrimeric G protein signalling upon stimulation with Stachel peptide. However, BFPP mutants showed different signalling defects for each G protein indicative of distinct activation and signalling properties of GPR56 for Gα12 , Gα13 or Gα11 . ß-arrestin recruitment was also investigated following the activation of GPR56 with Stachel peptide using BRET biosensors. N-terminally truncated GPR56 showed enhanced ß-arrestin recruitment; however, neither wild-type receptor nor BFPP mutants gave any measurable recruitment upon Stachel stimulation, pointing different activation mechanisms for ß-arrestin involvement.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Mutação , Proteínas de Ligação ao GTP/metabolismo , Peptídeos , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916293

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or ß-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Cálcio , Linhagem Celular Tumoral , Simulação por Computador , Ensaio de Imunoadsorção Enzimática , Humanos , Mutação , Neoplasias/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599099

RESUMO

Alternative splicing of G protein-coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone-releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to ß-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus ß-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward ß-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.


Assuntos
Processamento Alternativo/genética , Variação Genética/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células PC-3 , Células Sf9 , Transdução de Sinais/genética , beta-Arrestinas/genética
5.
Med Oncol ; 38(4): 38, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721131

RESUMO

Non-visual arrestins (ß-arrestins) are endocytic proteins that mediate agonist-activated GPCRs internalization and signaling pathways in an independent manner. The involvement of ß-arrestins in cancer invasion and metastasis is increasingly reported. So, it is hypothesized that inhibition of ß-arrestins may diminish the survival chances of cancer cells. This study aimed to evaluate the in vitro impact of inhibiting ß-arrestins on the autophagic and/or apoptotic responsiveness of breast cancer cells. We used Barbadin to selectively inhibit ß-Arr/AP2 interaction in AVP-stimulated V2R receptor of triple-negative breast cancer cells (MDA MB-231). Autophagy was assessed by the microtubule-associated protein 1 light chain 3-II (LC3II), apoptosis was measured by Annexin-V/PI staining and cell cycle distribution was investigated based upon the DNA content using flow cytometry. Barbadin reduced cell viability to 69.1% and increased the autophagy marker LC3II and its autophagic effect disappeared in cells transiently starved in Earle's balanced salt solution (EBSS). Also, Barbadin mildly enhanced the expression of P62 mRNA and arrested 63.7% of cells in G0/G1 phase. In parallel, the drug-induced apoptosis in 29.9% of cells (by AV/PI) and 27.8% of cells were trapped in sub-G1 phase. The apoptotic effect of Barbadin was enhanced when autophagy was inhibited by the PI3K inhibitor (Wortmannin). Conclusively, the data demonstrate the dual autophagic and apoptotic effects of ß-ßArr/AP2 inhibition in triple-negative breast cancer cells. These observations nominate ß-Arrs as selective targets in breast cancer treatment.


Assuntos
Apoptose , Autofagia , Pontos de Checagem da Fase G1 do Ciclo Celular , Receptores de Vasopressinas/metabolismo , beta-Arrestinas/antagonistas & inibidores , Complexo 2 de Proteínas Adaptadoras/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Pirimidinas/farmacologia , Receptores de Vasopressinas/agonistas , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
6.
Sci Rep ; 11(1): 1539, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452359

RESUMO

ß-Arrestins (ßArrs) are intracellular signal regulating proteins. Their expression level varies in some cancers and they have a significant impact on cancer cell function. In general, the significance of ßArrs in cancer research comes from studies examining GPCR signalling. Given the diversity of different GPCR signals in cancer cell regulation, contradictory results are inevitable regarding the role of ßArrs. Our approach examines the direct influence of ßArrs on cellular function and gene expression profiles by changing their expression levels in breast cancer cells, MDA-MB-231 and MDA-MB-468. Reducing expression of ßArr1 or ßArr2 tended to increase cell proliferation and invasion whereas increasing their expression levels inhibited them. The overexpression of ßArrs caused cell cycle S-phase arrest and differential expression of cell cycle genes, CDC45, BUB1, CCNB1, CCNB2, CDKN2C and reduced HER3, IGF-1R, and Snail. Regarding to the clinical relevance of our results, low expression levels of ßArr1 were inversely correlated with CDC45, BUB1, CCNB1, and CCNB2 genes compared to normal tissue samples while positively correlated with poorer prognosis in breast tumours. These results indicate that ßArr1 and ßArr2 are significantly involved in cell cycle and anticancer signalling pathways through their influence on cell cycle genes and HER3, IGF-1R, and Snail in TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , beta-Arrestinas/genética , Arrestinas/genética , Arrestinas/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais , beta-Arrestinas/metabolismo
7.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430208

RESUMO

Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of ß-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and ß-arrestins (ß-Arr) that modulate ß-AR signal termination via receptor desensitization and downregulation. GRK2 and ß-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and ß-Arrs.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/genética , Óxido Nítrico/genética , Receptores Adrenérgicos beta/genética , beta-Arrestinas/genética , GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Óxido Nítrico Sintase/genética , S-Nitrosotióis/metabolismo , Transdução de Sinais/genética
8.
J Biol Chem ; 296: 100133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268378

RESUMO

Receptors for the peptide hormones glucagon-like peptide-1 (GLP-1R), glucose-dependent insulinotropic polypeptide (GIPR), and glucagon (GCGR) are important regulators of insulin secretion and energy metabolism. GLP-1R agonists have been successfully deployed for the treatment of type 2 diabetes, but it has been suggested that their efficacy is limited by target receptor desensitization and downregulation due to recruitment of ß-arrestins. Indeed, recently described GLP-1R agonists with reduced ß-arrestin-2 recruitment have delivered promising results in preclinical and clinical studies. We therefore aimed to determine if the same phenomenon could apply to the closely related GIPR and GCGR. In HEK293 cells depleted of both ß-arrestin isoforms the duration of G protein-dependent cAMP/PKA signaling was increased in response to the endogenous ligand for each receptor. Moreover, in wildtype cells, "biased" GLP-1, GCG, and GIP analogs with selective reductions in ß-arrestin-2 recruitment led to reduced receptor endocytosis and increased insulin secretion over a prolonged stimulation period, although the latter effect was only seen at high agonist concentrations. Biased GCG analogs increased the duration of cAMP signaling, but this did not lead to increased glucose output from hepatocytes. Our study provides a rationale for the development of GLP-1R, GIPR, and GCGR agonists with reduced ß-arrestin recruitment, but further work is needed to maximally exploit this strategy for therapeutic purposes.


Assuntos
AMP Cíclico/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Incretinas/farmacologia , Receptores dos Hormônios Gastrointestinais/metabolismo , beta-Arrestinas/metabolismo , Animais , Polipeptídeo Inibidor Gástrico/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Secreção de Insulina , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores dos Hormônios Gastrointestinais/genética , Transdução de Sinais , beta-Arrestinas/genética
9.
Commun Biol ; 3(1): 789, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339901

RESUMO

It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that ß-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events.


Assuntos
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Quimiocina CXCL12/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestinas/genética
10.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297302

RESUMO

ß-Arrestins (ARRBs) are ubiquitously expressed scaffold proteins that mediate inactivation of G-protein-coupled receptor signaling, and in certain circumstances, G-protein independent pathways. Intriguingly, the two known ARRBs, ß-arrestin1 (ARRB1) and ß-Arrestin2 (ARRB2), seem to have opposing functions in regulating signaling cascades in several models in health and disease. Recent evidence suggests that ARRBs are implicated in regulating stem cell maintenance; however, their role, although crucial, is complex, and there is no universal model for ARRB-mediated regulation of stem cell characteristics. For the first time, this review compiles information on the function of ARRBs in stem cell biology and will discuss the role of ARRBs in regulating cell signaling pathways implicated in stem cell maintenance in normal and malignant stem cell populations. Although promising targets for cancer therapy, the ubiquitous nature of ARRBs and the plethora of functions in normal cell biology brings challenges for treatment selectivity. However, recent studies show promising evidence for specifically targeting ARRBs in myeloproliferative neoplasms.


Assuntos
Carcinogênese/metabolismo , Células-Tronco Neoplásicas/metabolismo , beta-Arrestinas/metabolismo , Animais , Carcinogênese/genética , Autorrenovação Celular , Humanos , Células-Tronco Neoplásicas/fisiologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , beta-Arrestinas/genética
11.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515353

RESUMO

GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires ß-arrestin but not Gs, AC9 traffic control requires Gs but not ß-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.


Cells sense changes in their chemical environment using proteins called receptors. These proteins often sit on the cell surface, detecting molecules outside the cell and relaying messages across the membrane to the cell interior. The largest family of receptors is formed of 'G protein-coupled receptors' (or GPCRs for short), so named because they relay messages through so-called G proteins, which then send information into the cell by interacting with other proteins called effectors. Next, the receptors leave the cell surface, travelling into the cell in compartments called endosomes. Researchers used to think that this switched the receptors off, stopping the signaling process, but it is now clear that this is not the case. Some receptors continue to signal from inside the cell, though the details of how this works are unclear. For signals to pass from a GPCR to a G protein to an effector, all three proteins need to be in the same place. This is certainly happening at the cell surface, but whether all three types of proteins come together inside endosomes is less clear. One way to find out is to look closely at the location of effector proteins when GPCRs are receiving signals. One well-studied effector of GPCR signaling is called adenylyl cyclase, a protein that makes a signal molecule called cAMP. Some G proteins switch adenylyl cyclase on, increasing cAMP production, while others switch it off. To find out how GPCRs send signals from inside endosomes, Lazar et al tracked adenylyl cyclase proteins inside human cells. This revealed that a type of adenylyl cyclase, known as adenylyl cyclase 9, follows receptors as they travel into the cell. Under the influence of active G proteins, activated adenylyl cyclase 9 left the cell surface and entered the endosomes. Once inside the cell, adenylyl cyclase 9 generated the signal molecule cAMP, allowing the receptors to send messages from inside the cell. Other types of adenylyl cyclase behaved differently. Adenylyl cyclase 1, for example, remained on the cell surface even after its receptors had left, and did not signal from inside the cell at all. Which cell behaviors are triggered from the membrane, and which are triggered from inside the cell is an important question in drug design. Understanding where effector proteins are active is a step towards finding the answers. This could help research into diseases of the heart, the liver and the lungs, all of which use adenylyl cyclase 9 to send signals.


Assuntos
Adenilil Ciclases/metabolismo , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenilil Ciclases/genética , Membrana Celular/genética , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Endossomos/genética , Humanos , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
12.
J Leukoc Biol ; 107(6): 1123-1135, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374043

RESUMO

Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.


Assuntos
Quimiocina CXCL12/química , AMP Cíclico/química , Receptores CXCR4/química , Receptores CXCR/química , Sequência de Aminoácidos , Benzilaminas , Sítios de Ligação , Quimiocina CXCL11/química , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ciclamos , AMP Cíclico/metabolismo , Expressão Gênica , Células HEK293 , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Simulação de Dinâmica Molecular , Mutação , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
13.
J Recept Signal Transduct Res ; 40(5): 395-409, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32456520

RESUMO

ß adrenergic receptors mediate effects via activation of G proteins, transactivation of membrane growth factor receptors, or ß adrenergic receptor-ß arrestin-facilitated scaffold-mediated signaling. Agonist occupancy of the ß adrenergic receptor induces desensitization by promoting ß adrenergic receptor kinase phosphorylation of the carboxyl terminal domain, facilitating binding of the amino terminal of the ß arrestin, which sterically inhibits interactions between ß adrenergic receptors and G proteins and induces clathrin-coated pit-mediated receptor endocytosis. Scaffold formation promoted by ß arrestin binding to the ß adrenergic receptor activates extracellular regulated kinase 1/2 in a manner which elicits cytosolic retention of, and prevents promotion of nuclear transcriptional activity by, mitogen-activated protein kinase. The ß adrenergic receptor kinase also interacts with a yet to be determined microsomal membrane protein via high-affinity electrostatic interactions. We evaluate ß adrenergic receptor structure, function, and downstream signaling and ß arrestin-mediated desensitization, receptor endocytosis, and scaffold-facilitated signal transduction in order to illumine therapeutic strategies designed to modulate these pathways. We trust these approaches may arm us with the capacity to selectively modulate signal transduction pathways regulating cellular proliferation, immunogenicity, angiogenesis, and invasive and metastatic potential implicated in cancer initiation, promotion, and progression.


Assuntos
Proteínas de Ligação ao GTP/genética , Neoplasias/genética , Receptores Adrenérgicos beta/genética , beta-Arrestinas/genética , Agonistas Adrenérgicos beta/uso terapêutico , Vesículas Revestidas por Clatrina/genética , Endocitose/genética , Humanos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/ultraestrutura , Relação Estrutura-Atividade , beta-Arrestinas/antagonistas & inibidores
14.
Commun Biol ; 3(1): 146, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218528

RESUMO

Hybridoma and phage display are two powerful technologies for isolating target-specific monoclonal antibodies based on the binding. However, for complex membrane proteins, such as G protein-coupled receptors (GPCRs), binding-based screening rarely results in functional antibodies. Here we describe a function-based high-throughput screening method for quickly identifying antibody antagonists and agonists against GPCRs by combining glycosylphosphatidylinositol-anchored antibody cell display with ß-arrestin recruitment-based cell sorting and screening. This method links antibody genotype with phenotype and is applicable to all GPCR targets. We validated this method by identifying a panel of antibody antagonists and an antibody agonist to the human apelin receptor from an immune antibody repertoire. In contrast, we obtained only neutral binders and antibody antagonists from the same repertoire by phage display, suggesting that the new approach described here is more efficient than traditional methods in isolating functional antibodies. This new method may create a new paradigm in antibody drug discovery.


Assuntos
Anticorpos/farmacologia , Receptores de Apelina/agonistas , Receptores de Apelina/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Animais , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células CHO , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Cricetulus , Citometria de Fluxo , Genes Reporter , Células HEK293 , Humanos , Hibridomas , Estudo de Prova de Conceito , Transdução de Sinais , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
15.
Cell Mol Life Sci ; 77(24): 5259-5279, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32040695

RESUMO

Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins ß-arrestins and G proteins. Depletion of ß-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that ß-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-ß-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-ß-arrestin complex to the plasma membrane, ß-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient ß-arrestin and by a specific inhibitor of ß-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of ß-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Complexos Multiproteicos/genética , Neoplasias/genética , beta-Arrestinas/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Membrana Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Ligação Proteica/genética , Domínios Proteicos/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores Acoplados a Proteínas G/genética , Vasopressinas/farmacologia
16.
Molecules ; 24(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614728

RESUMO

Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3',5'monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via ß-arrestin, suggesting that CRIP1a competes for ß-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.


Assuntos
Canabinoides/metabolismo , Proteínas de Transporte/genética , Receptor CB1 de Canabinoide/genética , Canabinoides/genética , Proteínas de Transporte/química , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Transtornos Motores/tratamento farmacológico , Transtornos Motores/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
17.
Cell Rep ; 27(7): 1960-1966.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091436

RESUMO

JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by ß-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of ß-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin.


Assuntos
Vírus JC/genética , Receptores 5-HT2 de Serotonina/genética , Receptores 5-HT2 de Serotonina/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Internalização do Vírus , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus JC/patogenicidade , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
18.
J Biol Chem ; 294(24): 9416-9429, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036565

RESUMO

The human complement component, C5a, binds two different seven-transmembrane receptors termed C5aR1 and C5aR2. C5aR1 is a prototypical G-protein-coupled receptor that couples to the Gαi subfamily of heterotrimeric G-proteins and ß-arrestins (ßarrs) following C5a stimulation. Peptide fragments derived from the C terminus of C5a can still interact with the receptor, albeit with lower affinity, and can act as agonists or antagonists. However, whether such fragments might display ligand bias at C5aR1 remains unexplored. Here, we compare C5a and a modified C-terminal fragment of C5a, C5apep, in terms of G-protein coupling, ßarr recruitment, endocytosis, and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation at the human C5aR1. We discover that C5apep acts as a full agonist for Gαi coupling as measured by cAMP response and extracellular signal-regulated kinase 1/2 phosphorylation, but it displays partial agonism for ßarr recruitment and receptor endocytosis. Interestingly, C5apep exhibits full-agonist efficacy with respect to inhibiting lipopolysaccharide-induced interleukin-6 secretion in human macrophages, but its ability to induce human neutrophil migration is substantially lower compared with C5a, although both these responses are sensitive to pertussis toxin treatment. Taken together, our data reveal that compared with C5a, C5apep exerts partial efficacy for ßarr recruitment, receptor trafficking, and neutrophil migration. Our findings therefore uncover functional bias at C5aR1 and also provide a framework that can potentially be extended to chemokine receptors, which also typically interact with chemokines through a biphasic mechanism.


Assuntos
Complemento C5a/metabolismo , Endocitose , Receptor da Anafilatoxina C5a/metabolismo , beta-Arrestinas/metabolismo , Sequência de Aminoácidos , Movimento Celular , Complemento C5a/genética , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neutrófilos/metabolismo , Fosforilação , Ligação Proteica , Receptor da Anafilatoxina C5a/genética , Homologia de Sequência , Transdução de Sinais , beta-Arrestinas/genética
19.
ACS Chem Neurosci ; 10(7): 3143-3153, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30946562

RESUMO

5-HT1B receptors modulate synaptic serotonin (5-HT) levels and play a significant role in the regulation of emotional behaviors. These receptors are Gαi/o-coupled and inhibit adenylyl cyclase but have also been reported to activate MAP kinases; however, the details of signaling cascades downstream of 5-HT1B receptor activation remain unclear, particularly in neuronal cells. We generated a stable 5-HT1B receptor-expressing Neuro2A (N2A-1B) neuronal cell line and demonstrate that activation of these receptors by the selective 5-HT1B agonist CP-94253 results in activation of ERK1/2 but not of other closely related MAP kinases. Phosphoproteomics revealed four novel phosphorylation sites on the third intracellular loop of the 5-HT1B receptor, and mutations of serine-256 and serine-291 to alanine led to reduced levels of ERK1/2 phosphorylation following receptor activation. Inhibition of Gαi/o signaling with pertussis toxin, as well as MEK1/2 inhibition with U0126, also reduced 5-HT1B-mediated ERK1/2 phosphorylation. Finally, we found that knockout of either ß-arrestin 1 or ß-arrestin 2 prevented 5-HT1B-mediated phosphorylation of ERK1/2. Taken together, these results show that 5-HT1B receptor activation selectively induces ERK1/2 activation through both the Gαi subunit and ß-arrestin proteins. This work elucidates the signal transduction pathway of 5-HT1B receptors, as well as key phosphorylation sites within the receptor that modulate ERK1/2 activation, and further characterizes the intracellular mechanisms that underlie 5-HT1B receptor function.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , beta-Arrestinas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , beta-Arrestinas/genética
20.
Pharmacol Res ; 143: 48-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844536

RESUMO

Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a significant step in receptor kinetics and is known to be involved in receptor down-regulation. However, the dopamine D3 receptor (D3R) has been an exception wherein agonist induces D3Rs to undergo desensitization followed by pharmacological sequestration - which is defined as the sequestration of cell surface receptors into a more hydrophobic fraction within the plasma membrane without undergoing the process of receptor internalization. Pharmacological sequestration renders the receptor in an inactive state on the membrane. In our previous study we demonstrated that a novel class of D3R agonists exemplified by SK608 have biased signaling properties via the G-protein dependent pathway and do not induce D3R desensitization. In this study, using radioligand binding assay, immunoblot or immunocytochemistry methods, we observed that SK608 induced internalization of human D3R stably expressed in CHO, HEK and SH-SY5Y cells which are derived from neuroblastoma cells, suggesting that it is not a cell-type specific event. Further, we have evaluated the potential mechanism of D3R internalization induced by these biased signaling agonists. SK608-induced D3R internalization was time- and concentration-dependent. In comparison, dopamine induced D3R upregulation and pharmacological sequestration in the same assays. GRK2 and clathrin/dynamin I/II are the key molecular players in the SK608-induced D3R internalization process, while ß-arrestin 1/2 and GRK-interacting protein 1(GIT1) are not involved. These results suggest that SK608-promoted D3R internalization is similar to the type II internalization observed among peptide binding GPCRs.


Assuntos
Butilaminas/farmacologia , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D3/agonistas , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Dopamina/farmacologia , Células HEK293 , Humanos , Transporte Proteico/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Transdução de Sinais , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA