Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
PLoS One ; 19(7): e0305817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980877

RESUMO

The bovine rumen contains a large consortium of residential microbes that release a variety of digestive enzymes for feed degradation. However, the utilization of these microbial enzymes is still limited because these rumen microorganisms are mostly anaerobes and are thus unculturable. Therefore, we applied a sequence-based metagenomic approach to identify a novel 2,445-bp glycoside hydrolase family 3 ß-glucosidase gene known as BrGH3A from the metagenome of bovine ruminal fluid. BrGH3A ß-glucosidase is a 92-kDa polypeptide composed of 814 amino acid residues. Unlike most glycoside hydrolases in the same family, BrGH3A exhibited a permuted domain arrangement consisting of an (α/ß)6 sandwich domain, a fibronectin type III domain and a (ß/α)8 barrel domain. BrGH3A exhibited greater catalytic efficiency toward laminaribiose than cellobiose. We proposed that BrGH3A is an exo-acting ß-glucosidase from Spirochaetales bacteria that is possibly involved in the intracellular degradation of ß-1,3-/1,4-mixed linkage glucans that are present in grass cell walls. BrGH3A exhibits rich diversity in rumen hydrolytic enzymes and may represent a member of a new clan with a permuted domain topology within the large family.


Assuntos
Rúmen , beta-Glucosidase , Animais , Bovinos , Rúmen/microbiologia , Rúmen/enzimologia , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Sequência de Aminoácidos , Filogenia , Domínios Proteicos , Metagenoma
2.
Int J Biol Macromol ; 276(Pt 2): 134030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038578

RESUMO

This study investigates the synthesis of (hemi)cellulolytic enzymes, including endoglucanase (CMCase), xylanase, and ß-glucosidase, employing Trichoderma reesei RUT-C30 and deoiled oil palm mesocarp fiber (OPMF) through solid-state fermentation (SSF). The objective was to determine the optimal process conditions for achieving high enzyme activities through a one-factor-at-a-time approach. The study primarily focused on the impact of the solid-to-liquid ratio, incubation period, initial pH, and temperature on enzyme activity. The effects of OPMF pretreatment, particularly deoiling and fortification, were explored. This approach significantly improved enzyme activity levels compared to the initial conditions, with CMCase increasing by 111.6 %, xylanase by 665.2 %, and ß-Glucosidase by 1678.1 %. Xylanase and ß-glucosidase activities, peaking at 1346.75 and 9.89 IU per gram dry substrate (GDS), respectively, under optimized conditions (1:4 ratio, pH 7.5, 20 °C, 9-day incubation). With lower moisture levels, CMCase reached its maximum activity of 227.84 IU/GDS. The study highlights how important it is for agro-industrial byproducts to support environmentally sustainable practices in the palm oil industry. It also emphasizes how differently each enzyme reacts to changes in process parameters.


Assuntos
Fermentação , Óleo de Palmeira , Temperatura , Óleo de Palmeira/química , Concentração de Íons de Hidrogênio , Celulase/metabolismo , Hypocreales/enzimologia , beta-Glucosidase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Celulose/química , Celulose/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928288

RESUMO

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Assuntos
Ácido Abscísico , Cádmio , Regulação da Expressão Gênica de Plantas , Pisum sativum , Folhas de Planta , Proteínas de Plantas , Ácido Abscísico/metabolismo , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dioxigenases/metabolismo , Dioxigenases/genética , beta-Glucosidase/metabolismo , beta-Glucosidase/genética
4.
Eur J Med Chem ; 275: 116570, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878517

RESUMO

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver ß-galactosidase and ß-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver ß-glucosidase and ß-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of ß-glucosidase or ß-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of ß-glucosidase and ß-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower ß-glucosidase and ß-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of ß-galactosidase and ß-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , beta-Galactosidase , beta-Glucosidase , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/metabolismo , Bovinos , Animais , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química
5.
Int J Pharm ; 657: 124139, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677396

RESUMO

Mesenchymal stem cell (MSC) therapy shows promise in regenerative medicine. For osteoarthritis (OA), MSCs delivered to the joint have a temporal window in which they can secrete growth factors and extracellular matrix molecules, contributing to cartilage regeneration and cell proliferation. However, upon injection in the non-vascularized joint, MSCs lacking energy supply, starve and die too quickly to efficiently deliver enough of these factors. To feed injected MSCs, we developed a hyaluronic acid (HA) derivative, where glucose is covalently bound to hyaluronic acid. To achieve this, the glucose moiety in 4-aminophenyl-ß-D-glucopyranoside was linked to the HA backbone through amidation. The hydrogel was able to deliver glucose in a controlled manner using a trigger system based on hydrolysis catalyzed by endogenous ß-glucosidase. This led to glucose release from the hyaluronic acid backbone inside the cell. Indeed, our hydrogel proved to rescue starvation and cell mortality in a glucose-free medium. Our approach of adding a nutrient to the polymer backbone in hydrogels opens new avenues to deliver stem cells in poorly vascularized, nutrient-deficient environments, such as osteoarthritic joints, and for other regenerative therapies.


Assuntos
Glucose , Ácido Hialurônico , Hidrogéis , Células-Tronco Mesenquimais , Osteoartrite , Ácido Hialurônico/química , Glucose/metabolismo , Osteoartrite/terapia , Hidrogéis/química , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , beta-Glucosidase/metabolismo , Animais
6.
J Sci Food Agric ; 104(10): 6186-6195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38459923

RESUMO

BACKGROUND: Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS: After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, ß-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION: Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.


Assuntos
Catecol Oxidase , Fermentação , Polifenóis , Saccharomyces cerevisiae , Sorghum , Sorghum/química , Sorghum/metabolismo , Polifenóis/metabolismo , Polifenóis/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Catecol Oxidase/metabolismo , Rhizopus/metabolismo , Rhizopus/enzimologia , Taninos/metabolismo , Taninos/análise , Taninos/química , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimologia , Celulase/metabolismo , Celulase/química , Neurospora/metabolismo , Manipulação de Alimentos/métodos , beta-Glucosidase/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Fenóis/metabolismo , Fenóis/química , Fenóis/análise
7.
An Acad Bras Cienc ; 95(suppl 2): e20221118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055563

RESUMO

The objective of this study was to evaluate the ß-glucosidase activity in the non-conventional yeasts under cellulose, glucose and sucrose substrates. The participation of the enzyme ß-glucosidase and its contribution to the enzymatic degradation of tannins is known. Within the classification of tannins are ellagitannins, molecules of gallic acid and ellagic acid, which are considered as nutraceutical compounds due to the properties that they present and that they can be used in the design of food and new drugs, synthesis of materials with antimicrobial capacity. The extracellular ß-glucosidase activity was mainly presented in the Candida and Pichia strains, being the glucose and sucrose media the most capable for inducing the activity that showed maximum values with P. pastoris in glucose (0.1682±0.00 µmol/min mg protein), and C. utilis in cellulose (0.1129±0.1349 µmol/min mg of protein), and sucrose (0.0657±0.0214 µmol/min mg protein). Additionally, I. terricola and P. kluyvery stood out in a qualitative cellulose degradation approach measured by Congo red method (9.60±0.04 mm and 9.20±0.05 mm respectively). These indicate that P. pastoris and C. utilis have potential as ß-glucosidase producers, especially when growing under complex carbon sources for biomass conversion, new biofuels production and polyphenol degradation with more manageable bioreactor process.


Assuntos
Celulases , Taninos , Leveduras , Celulose/metabolismo , Glucose , Sacarose , beta-Glucosidase/química , beta-Glucosidase/metabolismo
8.
J Microbiol Biotechnol ; 33(11): 1475-1483, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482800

RESUMO

This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and ß-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.


Assuntos
Isoflavonas , Leite de Soja , Antioxidantes/metabolismo , Fermentação , beta-Glucosidase/metabolismo , Microbiologia de Alimentos , Isoflavonas/metabolismo , Lactobacillus/metabolismo , Leite de Soja/metabolismo
9.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175202

RESUMO

BACKGROUND AND OBJECTIVE: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-ß-hydroxydammar-3-one-20(S)-O-ß-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.


Assuntos
Ginsenosídeos , Humanos , Ginsenosídeos/química , Biotransformação , Glicosídeo Hidrolases/metabolismo , Fibroblastos/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , beta-Glucosidase/metabolismo
10.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016390

RESUMO

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Assuntos
Indústria Farmacêutica , Medicamentos de Ervas Chinesas , Flavonoides , Microbiologia Industrial , Catálise , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Escherichia coli/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Microbiologia Industrial/métodos , Indústria Farmacêutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biossíntese , Hidrólise
11.
Toxins (Basel) ; 14(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35878196

RESUMO

As one of the most important conjugated mycotoxins, zearalenone-14-glucoside (Z14G) has received widespread attention from researchers. Although the metabolism of Z14G in animals has been extensively studied, the intracellular toxicity and metabolic process of Z14G are not fully elucidated. In this study, the cytotoxicity of Z14G to human ovarian granulosa cells (KGN) and the metabolism of Z14G in KGN cells were determined. Furthermore, the experiments of co-administration of ß-glucosidase and pre-administered ß-glucosidase inhibitor (Conduritol B epoxide, CBE) were used to clarify the mechanism of Z14G toxicity release. Finally, the human colon adenocarcinoma cell (Caco-2) metabolism model was used to verify the toxicity release mechanism of Z14G. The results showed that the IC50 of Z14G for KGN cells was 420 µM, and the relative hydrolysis rate of Z14G on ZEN was 35% (25% extracellular and 10% intracellular in KGN cells). The results indicated that Z14G cannot enter cells, and Z14G is only hydrolyzed extracellularly to its prototype zearalenone (ZEN) by ß-glucosidase which can exert toxic effects in cells. In conclusion, this study demonstrated the cytotoxicity of Z14G and clarified the toxicity release mechanism of Z14G. Different from previous findings, our results showed that Z14G cannot enter cells but exerts cytotoxicity through deglycosylation. This study promotes the formulation of a risk assessment and legislation limit for ZEN and its metabolites.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Zearalenona , beta-Glucosidase , Células CACO-2 , Matriz Extracelular/metabolismo , Feminino , Glucosídeos , Humanos , Zearalenona/metabolismo , Zearalenona/toxicidade , beta-Glucosidase/metabolismo
12.
J Exp Bot ; 73(3): 784-800, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570888

RESUMO

Glycoside hydrolase family1 ß-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice ß-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited ß-glucosidase activity on the universal substrate p-nitrophenyl ß-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated ß-glucosidase is necessary for proper intine development.


Assuntos
Oryza , Parede Celular/metabolismo , Fertilidade , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
13.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299210

RESUMO

Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of ß-glucosidases. Evaluation of previously characterized recombinant rice ß-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher ß-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The ß-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular ß-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.


Assuntos
Ácido Abscísico/farmacologia , Ésteres/química , Glucose/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , beta-Glucosidase/metabolismo , Ácido Abscísico/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Secas , Giberelinas/farmacologia , Hidrólise , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , beta-Glucosidase/genética
14.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808362

RESUMO

Olive mill wastewater (OMW) contains valuable and interesting bioactive compounds, among which is hydroxytyrosol, which is characterized by a remarkable antioxidant activity. Due to the health claims related to olive polyphenols, the aim of this study was to obtain an extract from OMW with an increased level of hydroxytyrosol by means of microbial enzymatic activity. For this purpose, four commercial adsorbent resins were selected and tested. The beta-glucosidase and esterase activity of strains of Wickerhamomyces anomalus, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae were also investigated and compared to those of a commercial enzyme and an Aspergillus niger strain. The W. anomalus strain showed the best enzymatic performances. The SP207 resin showed the best efficiency in selective recovery of hydroxytyrosol, tyrosol, oleuropein, and total phenols. The bioconversion test of the OMW extract was assessed by using both culture broths and pellets of the tested strains. The results demonstrated that the pellets of W. anomalus and L. plantarum were the most effective in hydroxytyrosol increasing in phenolic extract. The interesting results suggest the possibility to study new formulations of OMW phenolic extracts with multifunctional microorganisms.


Assuntos
Fungos/metabolismo , Olea/química , Fenóis/química , Extratos Vegetais/química , Eliminação de Resíduos Líquidos , beta-Glucosidase/metabolismo , Lactobacillaceae/metabolismo , Probióticos
15.
J Sci Food Agric ; 101(13): 5409-5418, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33647167

RESUMO

BACKGROUND: Hydrolysis of the fruit phenolic glucosides occurring during the oil extraction process is the main biochemical reaction affecting the biosynthesis and accumulation of secoiridoid compounds in virgin olive oil. An integrated approach at the molecular, biochemical, and metabolic level was used to study the olive ß-glucosidase gene family in seven olive cultivars selected by their different phenolic profiles. RESULTS: Eight ß-glucosidase genes have been identified by in silico analysis of an olive transcriptome. Their expression levels were analyzed by reverse transcription quantitative polymerase chain reaction in olive fruits at different ripening stages: I, green fruits, 16-19 weeks after flowering (WAF); II, yellow-green fruits, 22-25 WAF; III, turning fruits, 28-31 WAF; and IV, fully ripe fruits, 35-40 WAF. Gene expression was compared with the level of ß-glucosidase activity in the fruit and with the phenolic composition of fruits and oils from different olive cultivars. Phylogenetic analysis of the encoded proteins and differences found among the ß-glucosidase genes based on Gene Ontology enrichment analysis data suggests maximum involvement of two genes, OeBGLU1A and OeBGLU1B, in the phenolic composition of virgin olive oil. Positive correlation coefficients were found within each olive cultivar between OeBGLU1A and OeBGLU1B gene expression data and the phenolic content of the oil. CONCLUSION: The results obtained suggest that the expression pattern of specific ß-glucosidase genes may be an accurate predictor for the phenolic content of virgin olive oil that could be used in olive breeding programs. © 2021 Society of Chemical Industry.


Assuntos
Olea/enzimologia , Azeite de Oliva/química , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , beta-Glucosidase/metabolismo , Frutas/química , Frutas/classificação , Frutas/enzimologia , Frutas/genética , Ontologia Genética , Família Multigênica , Olea/química , Olea/classificação , Olea/genética , Proteínas de Plantas/genética , beta-Glucosidase/genética
16.
Food Chem ; 339: 128088, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979714

RESUMO

Flavonol glycosides are associated with astringency and bitterness of teas. To clarify the dominant enzymatic reaction of flavonol glycosides in tea leaves, the catalytic effects of polyphenol oxidase (PPO), peroxidase (POD) and ß-glucosidase were studied, with the maintaining rates of total flavonol glycosides (TFG) being 73.0%, 99.8% and 94.3%. PPO was selected for further investigations, including the effects of pH value (3.5 ~ 6.5), temperature (25 °C ~ 55 °C) and dosage (39 ~ 72 U/mL PPO and 36 U/mL PPO, 3 ~ 36 U/mL POD). The oxidation of flavonol glycosides were intensified at pH 6.5, with 51.8% and 15.4% of TFG maintained after PPO and PPO + POD treatments, suggesting an enhancement from POD. The sensitivity ranking to PPO was: myricetin glycosides > quercetin glycosides > kaempferol glycosides. The inhibitor treatment testified the leading role of PPO in catalyzing flavonol glycosides in tea leaves. Sugar moiety enhanced the docking affinity of flavonol glycosides for PPO. PPO shows the potential of modifying flavonol glycoside composition.


Assuntos
Camellia sinensis/metabolismo , Catecol Oxidase/metabolismo , Flavonóis/metabolismo , Folhas de Planta/metabolismo , Camellia sinensis/química , Catecol Oxidase/química , Flavonoides/química , Flavonoides/metabolismo , Flavonóis/química , Glicosídeos/química , Concentração de Íons de Hidrogênio , Quempferóis/química , Quempferóis/metabolismo , Oxirredução , Peroxidase/química , Peroxidase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Chá/química , Temperatura , beta-Glucosidase/química , beta-Glucosidase/metabolismo
17.
J Biomol Struct Dyn ; 39(7): 2628-2641, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32248752

RESUMO

Literature has shown that oil palm leaves (OPL) can be transformed into nanocellulose (NC) by fungal lignocellulosic enzymes, particularly those produced by the Trichoderma species. However, mechanism of ß-glucosidase and xylanase selectivity to degrade lignin, hemicellulose and cellulose in OPL for NC production remains relatively vague. The study aimed to comprehend this aspect by an in silico approach of molecular docking, molecular dynamics (MD) simulation and Molecular-mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, to compare interactions between the ß-glucosidase- and xylanase from Trichoderma asperellum UC1 in complex with each substrate. Molecular docking of the enzyme-substrate complex showed residues Glu165-Asp226-Glu423 and Arg155-Glu210-Ser160 being the likely catalytic residues of ß-glucosidase and xylanase, respectively. The binding affinity of ß-glucosidase for the substrates are as follows: cellulose (-8.1 kcal mol-1) > lignin (-7.9 kcal mol-1) > hemicellulose (-7.8 kcal mol-1), whereas, xylanase showed a corresponding preference for; hemicellulose (-6.7 kcal mol-1) > cellulose (-5.8 kcal mol-1) > lignin (-5.7 kcal mol-1). Selectivity of both enzymes was reiterated by MD simulations where interactions between ß-glucosidase-cellulose and xylanase-hemicellulose were the strongest. Notably low free-binding energy (ΔGbind) of ß-glucosidase and xylanase in complex with cellulose (-207.23 +/- 47.13 kJ/mol) and hemicellulose (-131.48 +/- 24.57 kJ/mol) were observed, respectively. The findings thus successfully identified the cellulose component selectivity of the polymer-acting ß-glucosidase and xylanase of T. asperellum UC1.Communicated by Ramaswamy H. Sarma.


Assuntos
Trichoderma , Hypocreales , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Folhas de Planta , beta-Glucosidase/metabolismo
18.
J Chem Ecol ; 46(11-12): 1117-1130, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037529

RESUMO

White fringetree is a host for the invasive emerald ash borer (EAB) but is of lower quality than the related and highly susceptible black ash. Field observations suggest that host trees grown in full sun are more resistant to EAB than those in shade, however the impact of light limitation on chemical defenses has not been assessed. We quantified constitutive and jasmonate-induced phloem defenses and growth patterns of white fringetree and black ash under differential light conditions and related them to EAB larval performance. White fringetree had significantly lower constitutive and induced activities of peroxidase, polyphenol oxidase, ß-glucosidase, chitinase and lignin content, but significantly higher gallic acid equivalent soluble phenolic, soluble sugar, and oleuropein concentrations compared to black ash. Multivariate analyses based on tissue chemical attributes displayed clear separation of species and induced defense responses. Further, EAB performed significantly worse on white fringetree than black ash, consistent with previous studies. Light limitation did not impact measured defenses or EAB larval performance, but it did decrease current year growth and increase photosynthetic efficiency. Overall our results suggest that phenolic profiles, metabolite abundance, and growth traits are important in mediating white fringetree resistance to EAB, and that short-term light limitation does not influence phloem chemistry or larval success.


Assuntos
Besouros/fisiologia , Ciclopentanos/metabolismo , Fraxinus/química , Oleaceae/química , Oxilipinas/metabolismo , Extratos Vegetais/química , Animais , Comportamento Animal , Catecol Oxidase/metabolismo , Quitinases/metabolismo , Fraxinus/metabolismo , Ácido Gálico/metabolismo , Glucosídeos Iridoides/metabolismo , Larva , Luz , Lignina/metabolismo , Oleaceae/metabolismo , Fenóis/metabolismo , Floema/metabolismo , Fotossíntese , Açúcares/metabolismo , beta-Glucosidase/metabolismo
19.
Food Funct ; 11(9): 7638-7650, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966464

RESUMO

The effects of precooked-refined sorghum flour consumption on antioxidant status, lipid profile, and colonic and bone health were evaluated. Twenty-four male Wistar rats were fed with control diet (C), or red or white precooked-refined sorghum based diets (SD) for 60 days. The intake of SD was lower than that of C, but the efficiency of all diets was similar. Rats fed with SD showed lower feces excretion, cecal pH and enzyme activities (ß-glucosidase, ß-glucuronidase and mucinase) than C. White SD improved intestinal architecture, cell proliferation and apoptosis, upregulated ZO1 and occludin tight junction proteins and stimulated goblet cell differentiation, enhancing the integrity of the mucosa barrier in both proximal and distal colonic mucosa in a better way than red SD. Consumption of SD significantly decreased serum triglyceride levels compared with the C diet. The mineral content of the right femur was not different among diets. The liver enzyme activities (superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase) did not show differences among diets. Liver reducing power and reduced glutathione/oxidize glutathione ratio were higher for animals consuming SD than C. It can be concluded that the consumption of precooked refined sorghum flours still has beneficial effects for health, mainly at the colonic level, despite the lower phenolics and fibre contents of refined flours with respect to whole grain flours.


Assuntos
Antioxidantes , Colo/fisiologia , Grão Comestível , Farinha , Mucosa Intestinal/fisiologia , Sorghum , Animais , Densidade Óssea , Culinária , Dieta , Fibras na Dieta/análise , Ingestão de Alimentos , Glucuronidase/metabolismo , Células Caliciformes/citologia , Células Caliciformes/fisiologia , Mucosa Intestinal/citologia , Metabolismo dos Lipídeos , Lipídeos/sangue , Fígado/metabolismo , Mucinas/metabolismo , Polifenóis/administração & dosagem , Polifenóis/análise , Polissacarídeo-Liases/metabolismo , Ratos , Ratos Wistar , Sorghum/química , Proteínas de Junções Íntimas/metabolismo , beta-Glucosidase/metabolismo
20.
BMC Genomics ; 21(1): 611, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894038

RESUMO

BACKGROUND: Anthocyanins determinate the flower color of many plants. Tobacco is a model plant for studying the molecular regulation of flower coloration. We investigated the mechanism underlying flower coloration in tobacco by profiling flavonoid metabolites,expression of anthocyanin biosynthetic structural genes and their regulator genes in the pink-flowered tobacco cultivar Yunyan 87 and white-flowered Yunyan 87 mutant. RESULT: Significant down-accumulation of anthocyanins, including cyanidin 3-O-glucoside, cyanin, cyanidin 3-O-rutinoside, pelargonidin 3-O-beta-D-glucoside, cyanidin O-syringic acid, pelargonin, and pelargonidin 3-O-malonylhexoside (log2 fold change < - 10), endowed the flower color mutation in Yunyan 87 mutant. Transcriptome analysis showed that the coordinately down-regulated anthocyanin biosynthetic genes including chalcone isomerase, naringenin 3-dioxygenase, dihydroflavonol 4-reductase and UDP-glucose:flavonoid 3-O-glucosyltransferase played critical roles in suppressing the formation of the aforesaid anthocyanins. Several genes encoding MYB and bHLH transcription factors were also found down-regulated, and probably the reason for the suppression of structural genes. CONCLUSION: This is the first study of tobacco flower coloration combining metabolome and transcriptome analyses, and the results shed a light on the systematic regulation mechanisms of flower coloration in tobacco. The obtained information will aid in developing strategies to modify flower color through genetic transformation.


Assuntos
Antocianinas/biossíntese , Flores/genética , Metaboloma , Nicotiana/genética , Pigmentação , Transcriptoma , Antocianinas/genética , Flores/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA