Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Med Sci ; 21(8): 1472-1490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903914

RESUMO

Synuclein family members (Snca, Sncb, and Scng) are expressed in the retina, but their precise locations and roles are poorly understood. We performed an extensive analysis of the single-cell transcriptome in healthy and injured retinas to investigate their expression patterns and roles. We observed the expression of all synuclein family members in retinal ganglion cells (RGCs), which remained consistent across species (human, mouse, and chicken). We unveiled differential expression of Snca across distinct clusters (highly expressed in most), while Sncb and Sncg displayed uniform expression across all clusters. Further, we observed a decreased expression in RGCs following traumatic axonal injury. However, the proportion of α-Syn-positive RGCs in all RGCs and α-Syn-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in all ipRGCs remained unaltered. Lastly, we identified changes in communication patterns preceding cell death, with particular significance in the pleiotrophin-nucleolin (Ptn-Ncl) and neural cell adhesion molecule signaling pathways, where communication differences were pronounced between cells with varying expression levels of Snca. Our study employs an innovative approach using scRNA-seq to characterize synuclein expression in health retinal cells, specifically focusing on RGC subtypes, advances our knowledge of retinal physiology and pathology.


Assuntos
Células Ganglionares da Retina , alfa-Sinucleína , gama-Sinucleína , Animais , Células Ganglionares da Retina/metabolismo , Humanos , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , beta-Sinucleína/genética , beta-Sinucleína/metabolismo , Galinhas/genética , Transcriptoma , Análise de Célula Única , Retina/metabolismo , Retina/citologia , Proteínas de Neoplasias
2.
Neurosci Lett ; 833: 137826, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38768940

RESUMO

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.


Assuntos
Polimorfismo de Nucleotídeo Único , beta-Sinucleína , beta-Sinucleína/genética , beta-Sinucleína/metabolismo , beta-Sinucleína/química , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Predisposição Genética para Doença , Mutação , Conformação Proteica
3.
Exp Neurol ; 358: 114221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36075453

RESUMO

The phosphodiesterase (PDE) superfamily comprises enzymes responsible for the cAMP and cGMP degradation to AMP and GMP. PDEs are abundant in the brain, where they are involved in several neuronal functions. High PDE10A abundance was previously observed in the striatum; however its consequences for stroke recovery were unknown. Herein, we evaluated the effects of PDE10A deactivation by TAK-063 (0.3 or 3 mg/kg, initiated 72 h post-stroke) in mice exposed to intraluminal middle cerebral artery occlusion. We found that PDE10A deactivation over up to eight weeks dose-dependently increased long-term neuronal survival, angiogenesis, and neurogenesis in the peri-infarct striatum, which represents the core of the middle cerebral artery territory, and reduced astroglial scar formation, whole brain atrophy and, more specifically, striatal atrophy. Functional motor-coordination recovery and the long-distance plasticity of pyramidal tract axons, which originate from the contralesional motor cortex and descend through the contralesional striatum to innervate the ipsilesional facial nucleus, were enhanced by PDE10A deactivation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed a set of dopamine receptor-related and neuronal plasticity-related PDE10A targets, which were elevated (e.g., protein phosphatase-1 regulatory subunit 1B) or reduced (e.g., serine/threonine protein phosphatase 1α, ß-synuclein, proteasome subunit α2) by PDE10A deactivation. Our results identify PDE10A as a therapeutic target that critically controls post-ischemic brain tissue remodeling and plasticity.


Assuntos
Ataque Isquêmico Transitório , Diester Fosfórico Hidrolases , Acidente Vascular Cerebral , Monofosfato de Adenosina/metabolismo , Animais , Atrofia , Cromatografia Líquida , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 1/metabolismo , Tratos Piramidais/metabolismo , Receptores Dopaminérgicos/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Espectrometria de Massas em Tandem , beta-Sinucleína/metabolismo
4.
Biomolecules ; 11(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439733

RESUMO

The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson's disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant ß-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog ß-synuclein (ßS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, ßS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, ßS, and Δ3 might therefore play a crucial role in neurodegenerative disease.


Assuntos
Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , Sequência de Aminoácidos , Humanos , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
5.
Acta Neuropsychiatr ; 32(6): 281-292, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32178745

RESUMO

OBJECTIVES: Lewy body dementia (LBD) is the second most prevalent neurodegenerative dementia and it causes more morbidity and mortality than Alzheimer's disease. Several genetic associations of LBD have been reported and their functional implications remain uncertain. Hence, we aimed to do a systematic review of all gene expression studies that investigated people with LBD for improving our understanding of LBD molecular pathology and for facilitating discovery of novel biomarkers and therapeutic targets for LBD. METHODS: We systematically reviewed five online databases (PROSPERO protocol: CRD42017080647) and assessed the functional implications of all reported differentially expressed genes (DEGs) using Ingenuity Pathway Analyses. RESULTS: We screened 3,809 articles and identified 31 eligible studies. In that, 1,242 statistically significant (p < 0.05) DEGs including 70 microRNAs have been reported in people with LBD. Expression levels of alternatively spliced transcripts of SNCA, SNCB, PRKN, APP, RELA, and ATXN2 significantly differ in LBD. Several mitochondrial genes and genes involved in ubiquitin proteasome system and autophagy-lysosomal pathway were significantly downregulated in LBD. Evidence supporting chronic neuroinflammation in LBD was inconsistent. Our functional analyses highlighted the importance of ribonucleic acid (RNA)-mediated gene silencing, neuregulin signalling, and neurotrophic factors in the molecular pathology of LBD. CONCLUSIONS: α-synuclein aggregation, mitochondrial dysfunction, defects in molecular networks clearing misfolded proteins, and RNA-mediated gene silencing contribute to neurodegeneration in LBD. Larger longitudinal transcriptomic studies investigating biological fluids of people living with LBD are needed for molecular subtyping and staging of LBD. Diagnostic biomarker potential and therapeutic promise of identified DEGs warrant further research.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Expressão Gênica/genética , Doença por Corpos de Lewy/genética , alfa-Sinucleína/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Ataxina-2/metabolismo , Autofagia/genética , Biomarcadores/metabolismo , Bases de Dados Factuais , Regulação para Baixo , Genes Mitocondriais/genética , Humanos , Doença por Corpos de Lewy/epidemiologia , Doença por Corpos de Lewy/patologia , MicroRNAs/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Fator de Transcrição RelA/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo
6.
Immunol Lett ; 217: 15-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689443

RESUMO

The aetiology of multiple sclerosis (MS) is as yet poorly understood. Multiple mechanisms in different disease stages are responsible for immunopathology in MS. HLA Class II DR2b (DRB1*1501 ß, DRA1*0101 α) is the strongest genetic risk factor for MS. Remnants of ancient retroviruses in the human genome, termed human endogenous retroviruses (HERV), and Epstein-Barr virus (EBV) infection are also associated with MS. In silico analyses of human endogenous retroviral envelope (HERV env) proteins and three myelin proteins that are principal targets of an autoimmune response in MS showed sequence similarities between potential TH epitopes within pairs of viral and myelin peptides predicted to bind HLA DR2b. This led to the proposal that such molecular mimicry may potentially trigger MS. HLA DR2b binding characteristics of previously identified peptides from the three myelin proteins and HERV env proteins as well as additional in silico predicted peptides from other encephalitogenic brain proteins and EBV proteins were studied to further investigate molecular mimicry. Peptides containing potential TH epitopes from the myelin oligodendrocyte glycoprotein and HERV env previously predicted to bind HLA DR2b as well as other pertinent potential HLA DR2b-restricted TH epitopes were confirmed to bind HLA DR2b molecules. Molecular modelling of HLA DR2b in complex with high affinity peptides derived from MOG and HERV env proteins showed that their binding could occur in a similar manner to a HLA DR2b-binding peptide containing a known TH epitope. A structurally related pair of peptides predicted to bind HLA DR2b from the EBV protein EBNA1 and ß synuclein, a brain protein implicated in MS, were also shown to similarly bind HLA DR2b. The findings justify investigating CD4+ T cell responses to the identified peptides.


Assuntos
Retrovirus Endógenos/química , Produtos do Gene env/química , Cadeias beta de HLA-DR/química , Herpesvirus Humano 4/química , Esclerose Múltipla/genética , Proteína Básica da Mielina/química , Glicoproteína Mielina-Oligodendrócito/química , beta-Sinucleína/química , Sequência de Aminoácidos/genética , Retrovirus Endógenos/genética , Epitopos/química , Produtos do Gene env/genética , Cadeias beta de HLA-DR/genética , Herpesvirus Humano 4/genética , Humanos , Modelos Moleculares , Mimetismo Molecular , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Ligação Proteica , Fatores de Risco , Linfócitos T/química , Linfócitos T/imunologia , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
7.
Sci Rep ; 9(1): 17579, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772376

RESUMO

Alpha-synuclein (αS) fibrils are toxic to cells and contribute to the pathogenesis and progression of Parkinson's disease and other synucleinopathies. ß-Synuclein (ßS), which co-localizes with αS, has been shown to provide a neuroprotective effect, but the molecular mechanism by which this occurs remains elusive. Here we show that αS fibrils formed in the presence of ßS are less cytotoxic, exhibit reduced cell seeding capacity and are more resistant to fibril shedding compared to αS fibrils alone. Using solid-state NMR, we found that the overall structure of the core of αS fibrils when co-incubated with ßS is minimally perturbed, however, the dynamics of Lys and Thr residues, located primarily in the imperfect KTKEGV repeats of the αS N-terminus, are increased. Our results suggest that amyloid fibril dynamics may play a key role in modulating toxicity and seeding. Thus, enhancing the dynamics of amyloid fibrils may be a strategy for future therapeutic targeting of neurodegenerative diseases.


Assuntos
Amiloide/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , Amiloide/ultraestrutura , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Confocal , Microscopia de Fluorescência , Agregação Patológica de Proteínas/metabolismo
8.
Exp Eye Res ; 185: 107676, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128101

RESUMO

Evidence of an age-related increase of ß-synuclein (SNCB) in several parts of the visual system including the retina has been reported. SNCB is thought to function as an antagonist of α-synuclein in neurodegenerative diseases, but the exact role of SNCB remains unclear. The presented work studies two different aspects of the onset and role of SNCB in the retinal pigment epithelium (RPE). First, the topographical and intracellular distributions of SNCB in the RPE of non-human marmoset monkey (Callithrix jacchus) were evaluated in paraffin-embedded eyes and RPE whole mounts from different developmental stages (neonatal, adolescent, and adult). Thus, revealed distinct lifetime-related alterations of the topographical and intracellular distributions of SNCB in the primate macula compared to the retinal periphery. Furthermore, the function and influences of SNCB on ARPE-19 cells and primary porcine RPE (ppRPE) cells were characterized by exposing these cells with recombinant SNCB (rSNCB) at different concentrations. Moreover, apoptosis, protein- and mRNA-expression levels of factors of the p53/MDM2 signaling cascade and inflammation- and oxidation-related genes were investigated. The observed dose-depended decreased apoptosis rates together with the PLD2 mediated activation of the p53 pathway promotes senescence-related processes in SNCB exposed common ARPE-19 cells from human origin. Further, increased HMOX1 and NOX4 levels indicate increased oxidative stress and inflammatory responses triggered by SNCB. The obtained differences in the distribution of SNCB in primate RPE together with alterations of cellular functions in rSNCB-exposed RPE cells (e.g., ARPE-19, ppRPE) support SNCB-related effects like inflammatory response and stress-related properties on RPE over lifetime. The possible functional relevance of SNCB in physiological aging converting into a pathophysiological condition should be investigated in further studies.


Assuntos
Envelhecimento/fisiologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , beta-Sinucleína/metabolismo , Animais , Apoptose , Callithrix , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/fisiologia , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Masculino , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Inclusão em Parafina , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos dos fármacos , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Sus scrofa , Proteína Supressora de Tumor p53/genética , beta-Sinucleína/farmacologia
9.
Sci Rep ; 8(1): 17563, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510219

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases characterized by inclusions mainly composed of α-synuclein (α-syn) aggregates. The objective of this study was to investigate if ß-synuclein (ß-syn) overexpression could have beneficial effects by inhibiting the aggregation of α-syn. The M83 transgenic mouse is a model of synucleinopathy, which develops severe motor symptoms associated with aggregation of α-syn. M83 neonate or adult mice were injected with adeno-associated virus vectors carrying the human ß-syn gene (AAVß-syn) or green fluorescent protein gene (AAVGFP) using different injection sites. The M83 disease was - or not - accelerated using extracts of M83 brains injected with brain extract from mouse (M83) or human (MSA) origins. AAV vectors expression was confirmed using Western blot and ELISA technics. AAV mediated ß-syn overexpression did not delay the disease onset or reduce the α-syn phosphorylated at serine 129 levels detected by ELISA, regardless of the AAV injection route and the inoculation of brain extracts. Instead, a proteinase-K resistant ß-syn staining was detected by immunohistochemistry, specifically in sick M83 mice overexpressing ß-syn after inoculation of AAVß-syn. This study indicated for the first time that viral vector-mediated ß-syn overexpression could form aggregates in a model of synucleinopathy.


Assuntos
Dependovirus , Vetores Genéticos , Atrofia de Múltiplos Sistemas , Neuroproteção , Transdução Genética , beta-Sinucleína , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/terapia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
10.
J Biol Chem ; 293(28): 11195-11205, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853639

RESUMO

Membrane association of α-synuclein (α-syn), a neuronal protein associated with Parkinson's disease (PD), is involved in α-syn function and pathology. Most previous studies on α-syn-membrane interactions have not used the physiologically relevant N-terminally acetylated (N-acetyl) α-syn form nor the most naturally abundant cellular lipid, i.e. phosphatidylcholine (PC). Here, we report on how PC membrane fluidity affects the conformation and aggregation propensity of N-acetyl α-syn. It is well established that upon membrane binding, α-syn adopts an α-helical structure. Using CD spectroscopy, we show that N-acetyl α-syn transitions from α-helical to disordered at the lipid melting temperature (Tm ). We found that this fluidity sensing is a robust characteristic, unaffected by acyl chain length (Tm = 34-55 °C) and preserved in its homologs ß- and γ-syn. Interestingly, both N-acetyl α-syn membrane binding and amyloid formation trended with lipid order (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin/cholesterol (2:2:1) ≥ DOPC), with gel-phase vesicles shortening aggregation kinetics and promoting fibril formation compared to fluid membranes. Furthermore, we found that acetylation enhances binding to PC micelles and small unilamellar vesicles with high curvature (r ∼16-20 nm) and that DPPC binding is reduced in the presence of cholesterol. These results confirmed that the exposure of hydrocarbon chains (i.e. packing defects) is essential for binding to zwitterionic gel membranes. Collectively, our in vitro results suggest that N-acetyl α-syn localizes to highly curved, ordered membranes inside a cell. We propose that age-related changes in membrane fluidity can promote the formation of amyloid fibrils, insoluble materials associated with PD.


Assuntos
Amiloide/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Proteínas de Neoplasias/química , Fosfatidilcolinas/química , alfa-Sinucleína/química , beta-Sinucleína/química , gama-Sinucleína/química , Acetilação , Sequência de Aminoácidos , Amiloide/metabolismo , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Micelas , Proteínas de Neoplasias/metabolismo , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo
11.
Biochemistry ; 57(26): 3830-3848, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29851342

RESUMO

The human synuclein (syn) family is comprised of α-, ß-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). ß- and γ-syn are absent in LB, and their exact role is still enigmatic. ß-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while ß-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of ß-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of ß- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and ß-syn, ß- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between ß-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.


Assuntos
Proteínas de Neoplasias/química , alfa-Sinucleína/química , beta-Sinucleína/química , gama-Sinucleína/química , Humanos , Corpos de Lewy/química , Corpos de Lewy/metabolismo , Proteínas de Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Domínios Proteicos , Ressonância de Plasmônio de Superfície , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo
12.
Cell Transplant ; 27(5): 796-813, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29808713

RESUMO

Increased ß-synuclein (Sncb) expression has been described in the aging visual system. Sncb functions as the physiological antagonist of α-synuclein (Snca), which is involved in the development of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. However, the exact function of Sncb remains unknown. The aim of this study was to elucidate the age-dependent role of Sncb in brain microvascular endothelial cells (BMECs). BMECs were isolated from the cortices of 5- to 9-d-old Sprague-Dawley rats and were cultured with different concentrations of recombinant Sncb (rSncb) up to 72 h resembling to some degree age-related as well as pathophysiological conditions. Viability, apoptosis, expression levels of Snca, and the members of phospholipase D2 (Pld2)/ p53/ Mouse double minute 2 homolog (Mdm2)/p19(Arf) pathway, response in RAC-alpha serine/threonine-protein kinase (Akt), and stress-mediating factors such as heme oxygenase (decycling) 1 (Hmox) and Nicotinamide adenine dinucleotide phosphate oxygenase 4 (Nox4) were examined. rSncb-induced effects were confirmed through Sncb small interfering RNA (siRNA) knockdown in BMECs. We demonstrated that the viability decreases, while the rate of apoptosis underly dose-dependent alterations. For example, apoptosis increases in BMECs following the treatment with higher dosed rSncb. Furthermore, we observed a decrease in Snca immunostaining and messenger RNA (mRNA) levels following the exposure to higher rScnb concentrations. Akt was shown to be downregulated and pAkt upregulated by this treatment, which was accompanied by a dose-independent increase in p19(Arf) levels and enhanced intracellular Mdm2 translocation in contrast to a dose-dependent p53 activation. Moreover, Pld2 activity was shown to be induced in rSncb-treated BMECs. The expression of Hmox and Nox4 after Sncb treatment was altered on BEMCs. The obtained results demonstrate dose-dependent effects of Sncb on BMECs in vitro. For example, the p53-mediated and Akt-independent apoptosis together with the stress-mediated response of BMECs related to exposure of higher SNCB concentrations may reflect the increase in Sncb with duration of culture as well as its impact on cell decay. Further studies, expanding on the role of Sncb, may help understand its role in the neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Apoptose , Encéfalo/irrigação sanguínea , Células Endoteliais/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , beta-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Feminino , Heme Oxigenase-1/metabolismo , Microvasos/patologia , NADPH Oxidase 4/metabolismo , Fosfolipase D/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , alfa-Sinucleína/metabolismo
13.
FASEB J ; 32(2): 995-1006, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054856

RESUMO

α-Synuclein (α-syn) is associated with a range of diseases, including Parkinson disease. In disease, α-syn is known to aggregate and has the potential to be neurotoxic. The association between copper and α-syn results in the formation of stellate toxic oligomers that are highly toxic to cultured neurons. We further investigated the mechanism of toxicity of α-syn oligomers. Cells that overexpress α-syn showed increased susceptibility to the toxicity of the oligomers, while those that overexpressed ß-syn showed increased resistance to the toxic oligomers. Elevated α-syn expression caused an increase in expression of the transcription factor Forkhead box O3a (FoxO3a). Inhibition of FoxO3a activity by the overexpression of DNA binding domain of FoxO3a resulted in significant protection from α-syn oligomer toxicity. Increased FoxO3a expression in cells was shown to be caused by increased ferrireductase activity and Fe(II) levels. These results suggest that α-syn increases FoxO3a expression as a result of its intrinsic ferrireductase activity. The results also suggest that FoxO3a plays a pivotal role in the toxicity of both Fe(II) and toxic α-syn species to neuronal cells.-Angelova, D. M., Jones, H. B. L., Brown, D. R. Levels of α- and ß-synuclein regulate cellular susceptibility to toxicity from α-synuclein oligomers.


Assuntos
FMN Redutase/biossíntese , Proteína Forkhead Box O3/metabolismo , Ferro/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , Linhagem Celular Tumoral , FMN Redutase/genética , Proteína Forkhead Box O3/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Doença de Parkinson/genética , alfa-Sinucleína/genética , beta-Sinucleína/genética
14.
Protein Sci ; 25(1): 286-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26332674

RESUMO

ß-synuclein (ßS) is a homologue of α-synuclein (αS), the major protein component of Lewy bodies in patients with Parkinson's disease. In contrast to αS, ßS does not form fibrils, mitigates αS toxicity in vivo and inhibits αS fibril formation in vitro. Previously a missense mutation of ßS, P123H, was identified in patients with Dementia with Lewy Body disease. The single P123H mutation at the C-terminus of ßS is able to convert ßS from a nontoxic to a toxic protein that is also able to accelerate formation of inclusions when it is in the presence of αS in vivo. To elucidate the molecular mechanisms of these processes, we compare the conformational properties of the monomer forms of αS, ßS and P123H-ßS, and the effects on fibril formation of coincubation of αS with ßS, and with P123H-ßS. NMR residual dipolar couplings and secondary structure propensities show that the P123H mutation of ßS renders it more flexible C-terminal to the mutation site and more αS-like. In vitro Thioflavin T fluorescence experiments show that P123H-ßS accelerates αS fibril formation upon coincubation, as opposed to wild type ßS that acts as an inhibitor of αS aggregation. When P123H-ßS becomes more αS-like it is unable to perform the protective function of ßS, which suggests that the extended polyproline II motif of ßS in the C-terminus is critical to its nontoxic nature and to inhibition of αS upon coincubation. These studies may provide a basis for understanding which regions to target for therapeutic intervention in Parkinson's disease.


Assuntos
Doença de Parkinson/genética , beta-Sinucleína/química , beta-Sinucleína/metabolismo , Sequência de Aminoácidos , Humanos , Cinética , Doença por Corpos de Lewy/genética , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Alinhamento de Sequência , beta-Sinucleína/antagonistas & inibidores , beta-Sinucleína/genética
15.
Mar Drugs ; 13(11): 6665-86, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26528989

RESUMO

Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, ß- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, ß and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of "non verified" sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.


Assuntos
alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo , Animais , Bases de Dados Genéticas , Peixes/genética , Peixes/metabolismo , Humanos , Análise de Sequência , alfa-Sinucleína/genética , alfa-Sinucleína/isolamento & purificação , beta-Sinucleína/genética , beta-Sinucleína/isolamento & purificação , gama-Sinucleína/genética , gama-Sinucleína/isolamento & purificação
16.
Chembiochem ; 16(16): 2319-28, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338312

RESUMO

Copper binding to α-synuclein (aS) and to amyloid-ß (Ab) has been connected to Parkinson's and Alzheimer's disease (AD), respectively, because Cu ions can modulate the peptide aggregation, and these Cu ⋅ peptide complexes can catalyse the production of reactive oxygen species (ROS). In a significant proportion of AD brains, aggregation of aS and Ab has been detected, and it was proposed that Ab and aS interact with each other. Thus, we investigated the potential interactions of Ab and aS through their binding of copper(I) and copper(II). Additionally, ß-synuclein (bS) was investigated, due to its additional methionine residue, a potential Cu(I) ligand. We found that: 1) the peptides containing the Cu-binding domains Ab1-16, aS1-15 and bS1-15 have similar affinities towards Cu(II) and towards Cu(I), with Ab1-16 being slightly stronger, 2) in the case of Cu(I), the additional Met residue in bS1-15 increased the affinity slightly, 3) the exchange of Cu(I/II) between the two peptides is rapid (≤ ms), 4) a/bS1-15 and Ab1-16 form a heterodimeric complex with Cu(II), 5) Cu(I) probably promotes a transient ternary complex, 6) the different Cu(I/II) coordination of Ab1-16, aS1-15 and bS1-15 impacts the capacity to produce ROS and to oxidise catechol, and 7) when Ab1-16, aS1-15 and Cu are present, the ROS production more closely resembles that by Ab1-16. The work gives insights into the coordination chemistry of these related peptides, and the relevance of coordination differences, the ternary complex and ROS production are discussed.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , alfa-Sinucleína/química , beta-Sinucleína/química , Peptídeos beta-Amiloides/metabolismo , Ácido Ascórbico/química , Sítios de Ligação , Catálise , Complexos de Coordenação/química , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo
17.
Neurodegener Dis ; 15(4): 243-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111745

RESUMO

BACKGROUND: ß-Synuclein (ß-Syn) is a member of the highly homologous synuclein protein family. The most prominent family member, α-synuclein (α-Syn), abnormally accumulates in so-called Lewy bodies, one of the major pathological hallmarks of α-synucleinopathies. Notably, parts of the peptide backbone, called the nonamyloid component, are also found in amyloid plaques. However, ß-Syn seems to have beneficial effects by reducing α-Syn aggregation, and amyloid antiaggregatory activity has been described. OBJECTIVE: The aim of the study was to analyze if wild-type ß-Syn can counteract functional and pathological changes in a murine Alzheimer model over different time periods. METHODS: At the onset of pathology, lentiviral particles expressing human ß-Syn were injected into the hippocampus of transgenic mice overexpressing human amyloid precursor protein with Swedish and London mutations (APPSL). An empty vector served as the control. Behavioral analyses were performed 1, 3 and 6 months after injection followed by biochemical and histological examinations of brain samples. RESULTS: ß-Syn expression was locally concentrated and rather modest, but nevertheless changed its effect on APP expression and plaque load in a time- and concentration-dependent manner. Interestingly, the phosphorylation of glycogen synthase kinase 3 beta was enhanced in APPSL mice expressing human ß-Syn, but an inverse trend was observed in wild-type animals. CONCLUSION: The initially reported beneficial effects of ß-Syn could be partially reproduced, but locally elevated levels of ß-Syn might also cause neurodegeneration. To enlighten the controversial pathological mechanism of ß-Syn, further examinations considering the relationship between concentration and exposure time of ß-Syn are needed.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , beta-Sinucleína/metabolismo , Animais , Ansiedade/prevenção & controle , Linhagem Celular Tumoral , Modelos Animais de Doenças , Encefalite/metabolismo , Vetores Genéticos , Humanos , Lentivirus , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo , beta-Sinucleína/administração & dosagem , beta-Sinucleína/genética
18.
Biochim Biophys Acta ; 1852(8): 1658-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25960149

RESUMO

Aggregation and fibril formation of human alpha-Synuclein (αS) are neuropathological hallmarks of Parkinson's disease and other synucleinopathies. The molecular mechanisms of αS aggregation and fibrillogenesis are largely unknown. Several studies suggested a sequence of events from αS dimerization via oligomerization and pre-fibrillar aggregation to αS fibril formation. In contrast to αS, little evidence suggests that γS can form protein aggregates in the brain, and for ßS its neurotoxic properties and aggregation propensities are controversially discussed. These apparent differences in aggregation behavior prompted us to investigate the first step in Synuclein aggregation, i.e. the formation of dimers or oligomers, by Bimolecular Fluorescence Complementation in cells. This assay showed some Synuclein-specific limitations, questioning its performance on a single cell level. Nevertheless, we unequivocally demonstrate that all Synucleins can interact with each other in a very similar way. Given the divergent aggregation properties of the three Synucleins this suggests that formation of dimers is not predictive for the aggregation of αS, ßS or γS in the aged or diseased brain.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/diagnóstico , Multimerização Proteica , Sinucleínas/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Prognóstico , Agregação Patológica de Proteínas/metabolismo , Isoformas de Proteínas , Sinucleínas/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , beta-Sinucleína/química , beta-Sinucleína/metabolismo , gama-Sinucleína/química , gama-Sinucleína/metabolismo
19.
Neurobiol Dis ; 79: 81-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25937088

RESUMO

α-Synuclein (α-syn), a small protein that has the intrinsic propensity to aggregate, is implicated in several neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are collectively known as synucleinopathies. Genetic, pathological, biochemical, and animal modeling studies provided compelling evidence that α-syn aggregation plays a key role in the pathogenesis of PD and related synucleinopathies. It is therefore of utmost importance to develop reliable tools that can detect the aggregated forms of α-syn. We describe here the generation and characterization of six novel conformation-specific monoclonal antibodies that recognize specifically α-syn aggregates but not the soluble, monomeric form of the protein. The antibodies described herein did not recognize monomers or fibrils generated from other amyloidogenic proteins including ß-syn, γ-syn, ß-amyloid, tau protein, islet amyloid polypeptide and ABri. Interestingly, the antibodies did not react to overlapping linear peptides spanning the entire sequence of α-syn, confirming further that they only detect α-syn aggregates. In immunohistochemical studies, the new conformation-specific monoclonal antibodies showed underappreciated small micro-aggregates and very thin neurites in PD and DLB cases that were not observed with generic pan antibodies that recognize linear epitope. Furthermore, employing one of our conformation-specific antibodies in a sandwich based ELISA, we observed an increase in levels of α-syn oligomers in brain lysates from DLB compared to Alzheimer's disease and control samples. Therefore, the conformation-specific antibodies portrayed herein represent useful tools for research, biomarkers development, diagnosis and even immunotherapy for PD and related pathologies.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Encéfalo/patologia , Escherichia coli , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/imunologia , beta-Sinucleína/metabolismo , gama-Sinucleína/imunologia , gama-Sinucleína/metabolismo , Proteínas tau/metabolismo
20.
PLoS One ; 9(1): e86983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489820

RESUMO

The synucleins are a family of natively unstructured proteins consisting of α-, ß-, and γ-synuclein which are primarily expressed in neurons. They have been linked to a wide variety of pathologies, including neurological disorders, such as Parkinson's disease (α-synuclein) and dementia with Lewy bodies (α- and ß-synuclein), as well as various types of cancers (γ-synuclein). Self-association is a key pathological feature of many of these disorders, with α-synuclein having the highest propensity to form aggregates, while ß-synuclein is the least prone. Here, we used a combination of fluorescence correlation spectroscopy and single molecule Förster resonance energy transfer to compare the intrinsic dynamics of different regions of all three synuclein proteins to investigate any correlation with putative functional or dysfunctional interactions. Despite a relatively high degree of sequence homology, we find that individual regions sample a broad range of diffusion coefficients, differing by almost a factor of four. At low pH, a condition that accelerates aggregation of α-synuclein, on average smaller diffusion coefficients are measured, supporting a hypothesis that slower intrachain dynamics may be correlated with self-association. Moreover, there is a surprising inverse correlation between dynamics and bulkiness of the segments. Aside from this observation, we could not discern any clear relationship between the physico-chemical properties of the constructs and their intrinsic dynamics. This work suggests that while protein dynamics may play a role in modulating self-association or interactions with other binding partners, other factors, particularly the local cellular environment, may be more important.


Assuntos
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , beta-Sinucleína/química , beta-Sinucleína/metabolismo , gama-Sinucleína/química , gama-Sinucleína/metabolismo , Sequência de Aminoácidos , Difusão , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA