Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Biol (Mosk) ; 57(4): 689-691, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37528789

RESUMO

Ras proteins are small GTPases and function as molecular switches to regulate cellular homeostasis. Ras-dependent signalling pathways regulate several essential processes such as cell cycle progression, growth, migration, apoptosis, and senescence. The dysregulation of Ras signaling pathway has been linked to several pathological outcomes. A potential role of RAS in regulating the redox signalling pathway has been established that includes the manipulation of ROS levels to provide a redox milieu that might be conducive to carcinogenesis. Reactive oxygen species (ROS) and mitochondrial impairment have been proposed as major factors affecting the physiology of cells and implicated in several pathologies. The present study was conducted to evaluate the role of Ras1, tert Butyl hydroperoxide (tBHP), and antimycin A in oxidative stress response in Schizosaccharomyces pombe cells. We observed decreased cell survival, higher levels of ROS, and mitochondrial dysfunctionality in ras1Δ cells and tBHP as well as respiratory inhibitor, antimycin A treated wild type cells. Furthermore, these defects were more profound in ras1Δ cells treated with tBHP or antimycin A. Additionally, Ras1 also has been shown to regulate the expression and activity of several antioxidant enzymes like glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), and catalase. Together, these results suggest the potential role of S. pombe Ras1 in mitigating oxidative stress response.


Assuntos
Schizosaccharomyces , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/toxicidade , terc-Butil Hidroperóxido/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antimicina A/farmacologia , Antimicina A/metabolismo , Estresse Oxidativo , Oxirredução
2.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570831

RESUMO

Bambusae caulis in Liquamen (BCL), which is extracted from heat-treated fresh bamboo stems, is a traditional herbal medicine widely used in Eastern countries. Recently, it has been reported to have anti-inflammatory and whitening effects. However, the protective effect of BCL on hepatocytes has not yet been elucidated. The present study aimed to determine whether BCL prevents oxidative stress induced by tert-butyl hydroperoxide (t-BHP) and exerts cytoprotective effects on hepatocytes. High-performance liquid chromatography and liquid chromatography with tandem mass spectroscopy were performed to analyze the type of polyphenols present in BCL. The activities of antioxidant enzymes and hepatocyte viability were assessed. The benzoic acid content was the highest among polyphenols present in BCL. Benzoic acid acts as a scavenger of free radicals, including reactive oxygen species. BCL increased the expression of antioxidant enzymes (glutamate-cysteine ligase and NADPH quinone dehydrogenase (1)) by activating nuclear factor erythroid 2-related factor 2 and reduced tBHP-induced cell death by inhibiting oxidative stress. BCL inhibited tBHP-induced phosphorylation of p38 and c-Jun N-terminal kinase but not that of extracellular signal-regulated kinase. In conclusion, BCL is a promising therapeutic candidate for treating oxidative-stress-induced hepatocyte damage.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/química , Hepatócitos , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/metabolismo , Polifenóis/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Sobrevivência Celular
3.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558102

RESUMO

Esculetin is a coumarin-derived compound with antioxidant and anti-inflammatory properties. The current study aims to evaluate the therapeutic implications of esculetin on retinal dysfunction and uncover the underlying mechanisms. Tert-butyl hydroperoxide (t-BHP) at a concentration of 300 µM was used to induce oxidative stress in human retinal pigment epithelial cell line (ARPE-19) cells. Esculetin at concentrations below 250 µM did not cause cytotoxicity to ARPE-19 cells. Cell viability analysis confirmed that t-BHP induced oxidative injury of ARPE-19 cells. However, ARPE-19 cells were protected from t-BHP-induced oxidative injury by esculetin in a concentration-dependent manner. As a result of the TUNEL assay to confirm apoptosis, esculetin treatment reduced the number of TUNEL-positive cells. Esculetin down-regulated the expression levels of Bax, Caspase-3, and PARP and up-regulated the expression level of Bcl2. Collectively, this study demonstrates that esculetin exerts potent antioxidant properties in ARPE-19 cells, inhibiting t-BHP-induced apoptosis under the regulation of apoptotic factors.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , terc-Butil Hidroperóxido/metabolismo , Apoptose , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Sobrevivência Celular
4.
PLoS Genet ; 18(9): e1010436, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178986

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lipids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as an antioxidant, but this has not been tested in animal models. In this study, we used C. elegans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalogens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in both wild type and ether-lipid deficient mutants can be rescued in several ways that change the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids (PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcriptional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our studies reveal important differences in how dietary lipids influence germ cell ferroptosis versus whole-body peroxide-induced oxidative stress. These studies highlight a potentially beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.


Assuntos
Ferroptose , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Éter/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados , Ferroptose/genética , Homeostase/genética , Ferro/metabolismo , Plasmalogênios/metabolismo , Compostos de Vinila , terc-Butil Hidroperóxido/metabolismo
5.
EBioMedicine ; 84: 104258, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36137413

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common degenerative joint disease primarily characterized by cartilage destruction. The aim of this study was to investigate the role, molecular characteristics and potential therapeutic target of chondrocyte ferroptosis in the pathogenesis of OA. METHODS: The expression of ferroptotic hallmarks (iron and lipid peroxidation accumulation, glutathione deletion) were analyzed in paired intact and damaged cartilages from OA patients. Single cell RNA sequencing (scRNA-seq) analysis was performed on 17,638 chondrocytes to verify the presence, investigate the molecular signatures and unveil the potential therapeutic target of ferroptotic chondrocyte cluster in human OA cartilages. Destabilization of medial meniscus (DMM)-induced OA model and tert-butyl hydroperoxide (TBHP)-treated primary mouse chondrocytes and human cartilage explants were used to evaluate the protective effect of pharmacologically activated transient receptor potential vanilloid 1 (TRPV1). The downstream molecular mechanisms of TRPV1 was further investigated in glutathione peroxidase 4 (Gpx4) heterozygous genetic deletion mice (Gpx4+/-). FINDINGS: The concentrations of iron and lipid peroxidation and the expression of ferroptotic drivers in the damaged areas of human OA cartilages were significantly higher than those in the intact cartilage. scRNA-seq analysis revealed a chondrocyte cluster characterized by preferentially expressed ferroptotic hallmarks and genes, namely ferroptotic chondrocyte cluster. Comprehensive gene set variation analysis revealed TRPV1 as an anti-ferroptotic target in human OA cartilage. Pharmacological activation of TRPV1 significantly abrogated cartilage degeneration by protecting chondrocytes from ferroptosis. Mechanistically, TRPV1 promoted the expression of GPX4, and its anti-ferroptotic role was largely mitigated in the OA model of Gpx4+/- mice. INTERPRETATION: TRPV1 activation protects chondrocytes from ferroptosis and ameliorates OA progression by upregulating GPX4. FUNDING: National Key R&D Program of China (2018YFC1105904), Key Program of NSFC (81730067), National Science Foundation of China (81772335, 81941009, 81802196), Natural Science Foundation of Jiangsu Province, China (BK20180127), Jiangsu Provincial Key Medical Talent Foundation, Six Talent Peaks Project of Jiangsu Province (WSW-079).


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Osteoartrite/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Análise de Sequência de RNA , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , terc-Butil Hidroperóxido/metabolismo , terc-Butil Hidroperóxido/farmacologia , terc-Butil Hidroperóxido/uso terapêutico
6.
Commun Biol ; 5(1): 659, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787676

RESUMO

Oxidative stress is one of the key factors that leads to red blood cells (RBCs) aging, and impairs their biomechanics and oxygen delivery. It occurs during numerous pathological processes and causes anaemia, one of the most frequent side effects of cancer chemotherapy. Here, we used microfluidics to simulate the microcirculation of RBCs under oxidative stress induced by tert-Butyl hydroperoxide. Oxidative stress was expected to make RBCs more rigid, which would lead to decrease their transit velocity in microfluidic channels. However, single-cell tracking combined with cytological and AFM studies reveals cell heterogeneity, which increases with the level of oxidative stress. The data indicates that the built-in antioxidant defence system has a limit exceeding which haemoglobin oxidation, membrane, and cytoskeleton transformation occurs. It leads to cell swelling, increased stiffness and adhesion, resulting in a decrease in the transit velocity in microcapillaries. However, even at high levels of oxidative stress, there are persistent cells in the population with an undisturbed biophysical phenotype that retain the ability to move in microcapillaries. Developed microfluidic analysis can be used to determine RBCs' antioxidant capacity for the minimization of anaemia during cancer chemotherapy.


Assuntos
Antioxidantes , Neoplasias , Antioxidantes/metabolismo , Eritrócitos/metabolismo , Humanos , Neoplasias/metabolismo , Estresse Oxidativo , terc-Butil Hidroperóxido/metabolismo , terc-Butil Hidroperóxido/farmacologia
7.
Oxid Med Cell Longev ; 2021: 1675652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603593

RESUMO

Toxoplasma gondii is a protozoan parasite that is widely parasitic in the nucleated cells of warm-blooded animals. Bioinformatic analysis of alkyl hydroperoxide reductase 1 (AHP1) of T. gondii is a member of the Prxs family and exhibits peroxidase activity. Cys166 was certified to be a key enzyme active site of TgAHP1, indicating that the enzyme follows a cysteine-dependent redox process. TgAHP1 was present in a punctate staining pattern anterior to the T. gondii nucleus. Oxidative stress experiments showed that the ∆Ahp1 strain was more sensitive to tert-butyl hydroperoxide (tBOOH) than hydrogen peroxide (H2O2), indicating that tBOOH may be a sensitive substrate for TgAHP1. Under tBOOH culture conditions, the ∆Ahp1 strain was significantly less invasive, proliferative, and pathogenic in mice. This was mainly due to the induction of tBOOH, which increased the level of reactive oxygen species in the parasites and eventually led to apoptosis. This study shows that TgAHP1 is a peroxisomes protein with cysteine-dependent peroxidase activity and sensitive to tBOOH.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , terc-Butil Hidroperóxido/metabolismo , Animais , Feminino , Edição de Genes , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/classificação , Peroxirredoxinas/genética , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , terc-Butil Hidroperóxido/farmacologia
8.
Mech Ageing Dev ; 190: 111318, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710895

RESUMO

Accumulation of senescent cells promotes the development of age-related pathologies and deterioration. In human skin, senescent cells potentially impair structure and function by secreting a mixture of signaling molecules and proteases that influence neighboring cells and degrade extracellular matrix components, such as elastin and collagen. One of the key underlying mechanisms of senescence and extrinsic skin aging is the increase of intracellular reactive oxygen species and resulting oxidative stress. Tert-butyl hydroperoxide (tBHP) is a known inducer of oxidative stress and cellular damage, acting at least in part by depleting the antioxidant glutathione. Here, we provide a detailed characterization of tBHP-induced senescence in human dermal fibroblasts in monolayer culture. In addition, results obtained with more physiological experimental models revealed that tBHP treated 3D reconstructed skin and ex vivo skin developed signs of chronic tissue damage, displaying reduced epidermal thickness and collagen fiber thinning. We, therefore, propose that tBHP treatment can be used as a model to study the effects of extrinsic skin aging, focusing mainly on the influence of environmental pollution.


Assuntos
Poluição Ambiental , Fibroblastos , Glutationa/metabolismo , Envelhecimento da Pele , Pele , terc-Butil Hidroperóxido/metabolismo , Antioxidantes/metabolismo , Células Cultivadas , Senescência Celular , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Epiderme/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/fisiologia , Humanos , Modelos Teóricos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia
9.
Biochem Biophys Res Commun ; 518(4): 685-690, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472963

RESUMO

Peroxiredoxins (Prxs) detoxify hydrogen peroxide (H2O2), peroxynitrite, and various organic hydroperoxides. However, the differential oxidative status of Prxs reacted with each peroxide remains unclear. In the present study, we focused on the oxidative alteration of Prxs and demonstrated that, in human red blood cells (RBCs), peroxiredoxin 2 (Prx2) is readily reactive with H2O2, forming disulfide dimers, but was not easily hyperoxidized. In contrast, Prx2 was highly sensitive to the relatively hydrophobic oxidants, such as tert-butyl hydroperoxide (t-BHP) and cumene hydroperoxide. These peroxides hyperoxidized Prx2 into oxidatively damaged forms in RBCs. The t-BHP treatment formed hyperoxidized Prx2 in a dose-dependent manner. When organic hydroperoxide-treated RBC lysates were subjected to reverse-phase high performance liquid chromatography, two peaks derived from hyperoxidized Prx2 appeared along with the decrease of that corresponding to native Prx2. Liquid chromatography-tandem mass spectrometry analysis clearly showed that hyperoxidation to sulfonic acid (-SO3H) at Cys-51 residue was more advanced in a newfound hyperoxidized Prx2 compared to another hydrophobic hyperoxidized form previously identified. These results indicate that irreversible hyperoxidation of the Prx2 monomer in RBCs was easily caused by organic hydroperoxide but not H2O2. Thus, it is important to detect the hyperoxidation of Prx2 into sulfinic or sulfonic acid derivates of Cys-51 because hyperoxidized Prx2 is a potential marker of oxidative injury caused by organic hydroperoxides in human RBCs.


Assuntos
Eritrócitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Adulto , Cromatografia de Fase Reversa , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Peróxido de Hidrogênio/química , Pessoa de Meia-Idade , Oxidantes/química , Oxidantes/metabolismo , Oxirredução , Peróxidos/química , Peroxirredoxinas/química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Ácidos Sulfônicos/química , Ácidos Sulfônicos/metabolismo , Adulto Jovem , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/metabolismo
10.
Redox Rep ; 23(1): 206-212, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30426855

RESUMO

OBJECTIVE: We aimed to investigate the effect of Sicyos angulatus (SA) ethanolic extracts as antioxidants and potential treatments for liver disease. METHODS: To establish a mouse model of liver injury, C57BL/6 male mice were injected via the caudal vein with a single dose of concanavalin A (Con A, 15 mg kg-1). SA extracts were administered once by oral gavage 30 min before Con A injection. RESULTS: In vitro studies showed that SA decreased tert-butyl hydroperoxide (t-BHP)-induced reactive oxygen species (ROS) production. SA administration reduced plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, as well as hepatic ROS levels, in a dose-dependent manner. Moreover, SA increased the activities of the hepatic antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner. Furthermore, SA treatment reduced pro-apoptotic protein levels. Con A-mediated cytosolic release of Smac/DIABLO and apoptosis-inducing factor (AIF), which are markers of necrosis, were dramatically decreased in HepG2 cells treated with SA. CONCLUSION: SA ameliorated liver injury and might be a good strategy for the treatment of liver injury.


Assuntos
Antioxidantes/metabolismo , Fígado/efeitos dos fármacos , Fígado/lesões , Loranthaceae/química , Extratos Vegetais/farmacologia , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , terc-Butil Hidroperóxido/metabolismo
11.
Int J Mol Med ; 42(5): 2584-2594, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106090

RESUMO

The aim of the current study was to explore the potential of TREK­TRAAK two­pore domain potassium (K2P) channels in protecting human retinal pigment epithelium (hRPE) cells against oxidative stress. hRPE cells were obtained from donors, and then cell identification and detection of the expression levels of TREK­TRAAK K2P channels in hRPE cells were conducted. Subsequently, tert­butyl hydroperoxide (t­BH) was used to induce oxidative stress in hRPE cells. Docosahexaenoic acid (DHA) was used to stimulate and fluoxetine was used to inhibit the TREK­TRAAK K2P channels. The survival rates of hRPE cells under oxidative stress were examined using flow cytometry. Apoptosis­associated factors, including Bax, Bcl­2, cleaved­caspase­3, αB­crystallin and their mRNAs, were examined using immunofluorescence, western blot and reverse transcription­polymerase chain reaction analyses. Variations in the cytoarchitecture were observed by immunofluorescence and electron microscopy. The cells examined in the present study were identified as hRPE cells. All members in the TREK­TRAAK K2P channel family (including TREK­1, TREK­2 and TRAAK) were found to be expressed in hRPE cells. Stimulation of TREK­TRAAK K2P channels increased the survival rates of hRPE cells under oxidative stress and the levels of intracellular protective factors, such as Bcl­2 and αB­crystallin. By contrast, inhibition of these channels decreased the cell survival rates and increased apoptosis enhancing factors, such as Bax and cleaved­caspase­3. Further examination of the cytoarchitecture revealed that TREK­TRAAK K2P channels protected the integrity of the hRPE cell structure against oxidative stress. In conclusion, the present study suggested that the activated TREK­TRAAK K2P channels serve a role in protecting hRPE cells against the oxidative stress induced by t­BH, which indicated that these K2P channels are potential novel targets in retinal protection and provided a new direction for research and therapy in retinal degeneration diseases.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Adulto , Western Blotting , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Masculino , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adulto Jovem , alfa-Cristalinas/metabolismo , beta-Cristalinas/metabolismo , terc-Butil Hidroperóxido/metabolismo
12.
Free Radic Biol Med ; 95: 16-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26968794

RESUMO

Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Desacopladora 2/genética , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/metabolismo , Glutationa/biossíntese , Glutationa Redutase/biossíntese , Glutationa Redutase/genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Isoquinolinas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Proteína Desacopladora 2/metabolismo , terc-Butil Hidroperóxido/metabolismo
13.
Toxicol In Vitro ; 29(5): 947-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25862122

RESUMO

The amine based diselenide, (Z)-N-(4-methylbenzylidene)-1-(2-((2-(1-((E)-4-methyl benzylideneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine ethyl)phenyl) diselanyl) phenyl) ethylimino) methyl)phenol (Compound A) an organoselenium compound that can mimic endogenous antioxidant enzymes, such as glutathione peroxidase (GPx), and diphenyl diselenide (PhSe)2 were tested against lipid peroxidation induced by sodium nitroprusside (SNP) and Fe(II) in rat brain, interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH) and glutathione peroxidase (GPx) like antioxidant activities with H2O2 or tBuOOH as substrates and with PhSH as thiol co-substrates as well as their ability to oxidize thiols were evaluated. From this study, we concluded that Compound A catalyze the reduction of H2O2 with thiol was ∼2-fold more active than (PhSe)2) in both tBuOOH and H2O2 systems when PhSH was used as a substrate. (PhSe)2 exhibited an increased ability to oxidize thiols while Compound A was not a good substrate for the oxidation of thiol used namely DTT and Cystine and showed DPPH radical-scavenging activity, while (PhSe)2 did not present radical scavenging activity. Compound A (amine based diselenide) presented better antioxidant profiles than (PhSe)2 against lipid peroxidation. The results clear showed that nitrogen atom in the Compound A can have a profound effect on their pharmacological properties.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Compostos de Bifenilo/metabolismo , Encéfalo/metabolismo , Glutationa Peroxidase , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Oxirredução , Picratos/metabolismo , Ratos Wistar , Compostos de Sulfidrila/metabolismo , terc-Butil Hidroperóxido/metabolismo
14.
Plant Physiol Biochem ; 90: 58-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25796076

RESUMO

Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less active, but more oxidation-resistant dimer.


Assuntos
Dimerização , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Hordeum/enzimologia , Peroxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Adaptação Fisiológica , Hordeum/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/metabolismo , terc-Butil Hidroperóxido/metabolismo
15.
Biochim Biophys Acta ; 1853(2): 348-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447550

RESUMO

Understanding the processes of mitochondrial dynamics (fission, fusion, biogenesis, and mitophagy) has been hampered by the lack of automated, deterministic methods to measure mitochondrial morphology from microscopic images. A method to quantify mitochondrial morphology and function is presented here using a commercially available automated high-content wide-field fluorescent microscopy platform and R programming-language-based semi-automated data analysis to achieve high throughput morphological categorization (puncta, rod, network, and large & round) and quantification of mitochondrial membrane potential. In conjunction with cellular respirometry to measure mitochondrial respiratory capacity, this method detected that increasing concentrations of toxicants known to directly or indirectly affect mitochondria (t-butyl hydroperoxide [TBHP], rotenone, antimycin A, oligomycin, ouabain, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone [FCCP]), decreased mitochondrial networked areas in cultured 661w cells to 0.60-0.80 at concentrations that inhibited respiratory capacity to 0.20-0.70 (fold change compared to vehicle). Concomitantly, mitochondrial swelling was increased from 1.4- to 2.3-fold of vehicle as indicated by changes in large & round areas in response to TBHP, oligomycin, or ouabain. Finally, the automated identification of mitochondrial location enabled accurate quantification of mitochondrial membrane potential by measuring intramitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence intensity. Administration of FCCP depolarized and administration of oligomycin hyperpolarized mitochondria, as evidenced by changes in intramitochondrial TMRM fluorescence intensities to 0.33- or 5.25-fold of vehicle control values, respectively. In summary, this high-content imaging method accurately quantified mitochondrial morphology and membrane potential in hundreds of thousands of cells on a per-cell basis, with sufficient throughput for pharmacological or toxicological evaluation.


Assuntos
Inteligência Artificial , Imageamento Tridimensional/métodos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxidantes/toxicidade , Fenótipo , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , terc-Butil Hidroperóxido/metabolismo
16.
Int J Mol Sci ; 15(9): 16649-64, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25244015

RESUMO

The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.


Assuntos
Calcitriol/farmacologia , Dano ao DNA/efeitos dos fármacos , Dexametasona/farmacologia , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/metabolismo
17.
Curr Microbiol ; 69(1): 10-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24562758

RESUMO

The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3-4 and 5-6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism.


Assuntos
FMN Redutase/metabolismo , Glutationa/farmacologia , Pichia/metabolismo , Riboflavina/biossíntese , FMN Redutase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Mutação , Fenótipo , Pichia/genética , Análise de Sequência de DNA , terc-Butil Hidroperóxido/metabolismo
18.
Neurochem Int ; 64: 9-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24231470

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.


Assuntos
Cucumaria/química , Ácido Eicosapentaenoico/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Cucumaria/metabolismo , Peróxido de Hidrogênio/toxicidade , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Ratos , terc-Butil Hidroperóxido/metabolismo , terc-Butil Hidroperóxido/toxicidade
19.
PLoS One ; 8(7): e70163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922950

RESUMO

The Nrf2 (NF-E2 related factor 2)-ARE (antioxidant response element) pathway controls a powerful array of endogenous cellular antioxidant systems and is an important pathway in the detoxification of reactive oxygen species (ROS) in the brain. Using a combination of quantitative proteomics and siRNA screening, we have identified novel protective mechanisms of the Nrf2-ARE pathway against oxidative stress in astrocytes. Studies from our lab and others have shown Nrf2 overexpression protects astrocytes from oxidative stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In this study, we show that induction of Nrf2 reduces levels of reactive oxygen species (ROS) produced by various oxidative stressors and results in robust cytoprotection. To identify the enzymes responsible for these effects, we used stable isotope labeling by amino acids in cell culture (SILAC) and quantitative shotgun proteomics to identify 72 Nrf2-regulated proteins in astrocytes. We hypothesized a subset of these proteins might play a critical role in Nrf2 protection. In order to identify these critical proteins, we used bioinformatics to narrow our target list of proteins and then systematically screened each candidate with siRNA to assess the role of each in Nrf2 protection. We screened each target against H2O2, tert-butyl hydroperoxide, and 4-hydroxynonenal and subsequently identified three enzymes-catalase, prostaglandin reductase-1, and peroxiredoxin-6-that are critical for Nrf2-mediated protection in astrocytes.


Assuntos
Astrócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteômica , RNA Interferente Pequeno/genética , Álcool Desidrogenase/metabolismo , Aldeídos/metabolismo , Animais , Elementos de Resposta Antioxidante , Astrócitos/efeitos dos fármacos , Catalase/metabolismo , Regulação da Expressão Gênica , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Estresse Oxidativo/genética , Peroxirredoxina VI/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , terc-Butil Hidroperóxido/metabolismo
20.
Anal Bioanal Chem ; 405(8): 2635-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377112

RESUMO

Hepatotoxicity of drug candidates is one of the major concerns in drug screening in early drug discovery. Detection of hepatic oxidative stress can be an early indicator of hepatotoxicity and benefits drug selection. The glutathione (GSH) and glutathione disulfide (GSSG) pair, as one of the major intracellular redox regulating couples, plays an important role in protecting cells from oxidative stress that is caused by imbalance between prooxidants and antioxidants. The quantitative determination of the GSSG/GSH ratios and the concentrations of GSH and GSSG have been used to indicate oxidative stress in cells and tissues. In this study, we tested the possibility of using the biliary GSSG/GSH ratios as a biomarker to reflect hepatic oxidative stress and drug toxicity. Four compounds that are known to alter GSH and GSSG levels were tested in this study. Diquat (diquat dibromide monohydrate) and acetaminophen were administered to rats. Paraquat and tert-butyl hydroperoxide were administered to mice to induce changes of biliary GSH and GSSG. The biliary GSH and GSSG were quantified using calibration curves prepared with artificial bile to account for any bile matrix effect in the LC-MS analysis and to avoid the interference of endogenous GSH and GSSG. With four examples (in rats and mice) of drug-induced changes in the kinetics of the biliary GSSG/GSH ratios, this study showed the potential for developing an exposure response index based on biliary GSSG/GSH ratios for predicting hepatic oxidative stress.


Assuntos
Bile/química , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Dissulfeto de Glutationa/análise , Glutationa/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Bile/metabolismo , Diquat/efeitos adversos , Diquat/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Masculino , Camundongos , Oxirredução , Paraquat/efeitos adversos , Paraquat/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos , Ratos Sprague-Dawley , terc-Butil Hidroperóxido/efeitos adversos , terc-Butil Hidroperóxido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA