Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.083
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. biol ; 84: e257070, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360228

RESUMO

Nanoparticles (NPs) are insoluble particles with a diameter of fewer than 100 nanometers. Two main methods have been utilized in orthodontic therapy to avoid microbial adherence or enamel demineralization. Certain NPs are included in orthodontic adhesives or acrylic resins (fluorohydroxyapatite, fluorapatite, hydroxyapatite, SiO2, TiO2, silver, nanofillers), and NPs (i.e., a thin layer of nitrogen-doped TiO2 on the bracket surfaces) are coated on the surfaces of orthodontic equipment. Although using NPs in orthodontics may open up modern facilities, prior research looked at antibacterial or physical characteristics for a limited period of time, ranging from one day to several weeks, and the limits of in vitro studies must be understood. The long-term effectiveness of nanotechnology-based orthodontic materials has not yet been conclusively confirmed and needs further study, as well as potential safety concerns (toxic effects) associated with NP size.


Nanopartículas (NPs) são partículas insolúveis com diâmetro inferior a 100 nanômetros. Dois métodos principais têm sido utilizados na terapia ortodôntica para evitar a aderência microbiana ou a desmineralização do esmalte: NPs são incluídas em adesivos ortodônticos ou resinas acrílicas (fluoro-hidroxiapatita, fluorapatita, hidroxiapatita, SiO2, TiO2, prata, nanopreenchimentos) e NPs são revestidas nas superfícies de equipamentos ortodônticos, ou seja, uma camada fina de TiO2 dopado com nitrogênio nas superfícies do braquete. Embora o uso de NPs em ortodontia possa tornar acessível modernos recursos, pesquisas anteriores analisaram as características antibacterianas ou físicas por um período limitado de tempo, variando de 24 horas a várias semanas, por isso devem ser compreendidos os limites dos estudos in vitro. A eficácia de longo prazo de materiais ortodônticos com base em nanotecnologia ainda não foi confirmada de forma conclusiva, o que exige mais estudos, bem como potenciais preocupações de segurança (efeitos tóxicos) associadas ao tamanho da NP.


Assuntos
Ortodontia , Desmineralização , Esmalte Dentário , Nanopartículas , Anti-Infecciosos
2.
Braz. j. biol ; 84: e256944, 2024. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364507

RESUMO

In order to ensure the timely and uninterrupted supply of medicinal plant raw materials, the methods of cultivation of plant cell cultures, namely, the production of plant root cultures, are relevant. In this paper, the geroprotective potential of Hedysarum neglectum Ledeb and Panax ginseng C. A. Mey root cultures is studied. They were cultured under in vitro conditions by transforming the rhizome (H. neglectum) and seed seedlings (P. ginseng) with Agrobacterium rhizogenes 15834 Swiss. To identify the geroprotective potential, the antimicrobial disc-diffusion method and the antioxidant activity were analyzed by titration of KMnO4 extracts of plant root cultures. The qualitative and quantitative composition was analyzed using high-performance liquid chromatography, thin-layer chromatography, and gas chromatography with mass spectrometry. In the course of the work, the presence of antimicrobial and antioxidant activity of plant root culture extracts was established. Biologically active substances contained in extracts of Hedysarum neglectum Ledeb root crops and Panax ginseng C. A. Mey are characterized by geroprotective potential, so they can act as a source of natural antioxidants in the functional nutrition of the geroprotective orientation.


Para garantir o abastecimento em tempo e ininterrupto de matérias-primas de plantas medicinais, são relevantes os métodos de cultivo de culturas de células vegetais, nomeadamente a produção de culturas de raízes vegetais. Neste trabalho, foi estudado o potencial geroprotetor de culturas de raízes de Hedysarum neglectum Ledeb e Panax ginseng C. A. Mey. Eles foram cultivados em condições in vitro pela transformação do rizoma (H. neglectum) e mudas de sementes (P. ginseng) com Agrobacterium rhizogenes 15834 Swiss. Para identificar o potencial geroprotetor, o método antimicrobiano de difusão em disco e a atividade antioxidante foram analisados por titulação de extratos de KMnO4 de raízes de plantas. A composição qualitativa e quantitativa foi analisada por cromatografia líquida de alta eficiência, cromatografia em camada delgada e cromatografia gasosa com espectrometria de massa. No decorrer do trabalho, foi constatada a presença de atividade antimicrobiana e antioxidante dos extratos de raízes de plantas. Substâncias biologicamente ativas contidas em extratos de raízes de H. neglectum Ledeb e P. ginseng C. A. Mey são caracterizadas pelo potencial geroprotetor, podendo atuar como fonte de antioxidantes naturais na nutrição funcional da orientação geroprotetora.


Assuntos
Plantas Medicinais , Raízes de Plantas , Panax , Anti-Infecciosos , Antioxidantes
3.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685861

RESUMO

This study focuses on the enzymatic hydrolysis of hemoglobin, the main component of cruor that gives blood its red color in mammals. The antibacterial and antioxidant potentials of human hemoglobin hydrolysates were evaluated in comparison to bovine hemoglobin. The results showed strong antimicrobial activity of the peptide hydrolysates against six bacterial strains, independent of the initial substrate concentration level. The hydrolysates also showed strong antioxidant activity, as measured by four different tests. In addition, the antimicrobial and antioxidant activities of the human and bovine hemoglobin hydrolysates showed little or no significant difference, with only the concentration level being the determining factor in their activity. The results of the mass spectrometry study showed the presence of a number of bioactive peptides, the majority of which have characteristics similar to those mentioned in the literature. New bioactive peptides were also identified in human hemoglobin, such as the antibacterial peptides PTTKTYFPHF (α37-46), FPTTKTYFPH (α36-45), TSKYR (α137-141), and STVLTSKYR (α133-141), as well as the antioxidant TSKYR (α137-141). According to these findings, human hemoglobin represents a promising source of bioactive peptides beneficial to the food or pharmaceutical industries.


Assuntos
Anti-Infecciosos , Antioxidantes , Animais , Humanos , Antioxidantes/farmacologia , Hidrólise , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Hemoglobinas/farmacologia , Peptídeos/farmacologia , Mamíferos
4.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685896

RESUMO

The growing challenge of chronic wounds and antibiotic resistance has spotlighted the potential of dual-function peptides (antimicrobial and wound healing) as novel therapeutic strategies. The investigation aimed to characterize and correlate in silico the physicochemical attributes of these peptides with their biological activity. We sourced a dataset of 207 such peptides from various peptide databases, followed by a detailed analysis of their physicochemical properties using bioinformatic tools. Utilizing statistical tools like clustering, correlation, and principal component analysis (PCA), patterns and relationships were discerned among these properties. Furthermore, we analyzed the peptides' functional domains for insights into their potential mechanisms of action. Our findings spotlight peptides in Cluster 2 as efficacious in wound healing, whereas Cluster 1 peptides exhibited pronounced antimicrobial potential. In our study, we identified specific amino acid patterns and peptide families associated with their biological activities, such as the cecropin antimicrobial domain. Additionally, we found the presence of polar amino acids like arginine, cysteine, and lysine, as well as apolar amino acids like glycine, isoleucine, and leucine. These characteristics are crucial for interactions with bacterial membranes and receptors involved in migration, proliferation, angiogenesis, and immunomodulation. While this study provides a groundwork for therapeutic development, translating these findings into practical applications necessitates additional experimental and clinical research.


Assuntos
Anti-Infecciosos , Antifibrinolíticos , Humanos , Anti-Infecciosos/farmacologia , Cicatrização , Aminoácidos , Arginina
5.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686199

RESUMO

Peptaibols are proteolysis-resistant, membrane-active peptides. Their remarkably stable helical 3D-structures are key for their bioactivity. They can insert themselves into the lipid bilayer as barrel staves, or lay on its surface like carpets, depending on both their length and the thickness of the lipid bilayer. Medium-length peptaibols are of particular interest for studying the peptide-membrane interaction because their length allows them to adopt either orientation as a function of the membrane thickness, which, in turn, might even result in an enhanced selectivity. Electron paramagnetic resonance (EPR) is the election technique used to this aim, but it requires the synthesis of spin-labeled medium-length peptaibols, which, in turn, is hampered by the poor reactivity of the Cα-tetrasubstituted residues featured in their sequences. After several years of trial and error, we are now able to give state-of-the-art advice for a successful synthesis of nitroxide-containing peptaibols, avoiding deleted sequences, side reactions and difficult purification steps. Herein, we describe our strategy and itsapplication to the synthesis of spin-labeled analogs of the recently discovered, natural, medium-length peptaibol pentadecaibin. We studied the antitumor activity of pentadecaibin and its analogs, finding potent cytotoxicity against human triple-negative breast cancer and ovarian cancer. Finally, our analysis of the peptide conformational preferences and membrane interaction proved that pentadecaibinspin-labeling does not alter the biological features of the native sequence and is suitable for further EPR studies. The nitroxide-containing pentadecaibins, and their synthetic strategy described herein, will help to shed light on the mechanism of the peptide-membrane interaction of medium-length peptaibols.


Assuntos
Anti-Infecciosos , Peptaibols , Humanos , Peptaibols/farmacologia , Marcadores de Spin , Bicamadas Lipídicas , Anti-Infecciosos/farmacologia
6.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687119

RESUMO

The use of natural products isolated from mushrooms against infection, cancer diseases and other oxidative-stress-related diseases is one of the cornerstones of modern medicine. Therefore, we tried to establish a combination of medicinal mushrooms and nanotechnology possibly with the field of medicine for the development of antibacterial agents against these MDR strains. The aim of the research was to understand the molecular identification, characterization and antibacterial action of Calvatia gigantea and Mycena leaiana. The identification of fruiting body species via morpho-anatomical and molecular methods was necessary to analyze the genetic variability and phylogenetic relationships of mushrooms. Phylogenetic analysis revealed that Calvatia from Hunza, Pakistan, exhibited 98% resemblance to the previously discovered Langermannia gigantean (DQ112623) and L. gigantean (LN714562) from northern Europe, and Mycena (Pakistan) showed a 97% similarity to M. leaiana (MF686520) and M. leaiana (MW448623) from the USA. UV-vis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used for AgNPs' characterization. The UV-vis absorption peak of 500-600 nm indicates the AgNPs' presence. XRD results determined Calvatia gigantea AgNPs were nanocrystals and Mycena leaiana seems to be amorphous. In addition, SEM results showed the cubic morphology of C. gigantea with a diameter of 65 nm, and the FTIR spectra of fruiting body revealed the presence of functional groups-carboxyl, nitro, and hydroxyl-in AgNPs, which catalyzed the reduction of Ag+ to Ag0. Further antibacterial activity of mushrooms against MDR strains was determined via agar well diffusion assay, and Minimum Inhibitory Concentration (MIC) was estimated by qualitative experimentation using the broth dilution method. All experiments were conducted in triplicate. The results showed that the mushroom AgNPs, along with their synergy and nano-composites (with the exception of Ethyl-acetate), were shown to have zones of inhibition from 4 mm to 29 mm against multidrug-resistant pathogens such as Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Proteus mirabilis, Enterobacter cloacae and Escherichia coli. The mushroom composites were active against most of the tested microorganisms whilst the lowest MIC value (10-40 mg/mL) was recorded against MDR strains. Hence, the present study suggested the possibility of employing compounds present in mushrooms for the development of new antibacterial agents, as well as efflux pump inhibitors.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Filogenia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Escherichia coli
7.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687252

RESUMO

In the last few decades, the search for metal nanoparticles as an alternative to cancer treatments and antibiotics has increased. In this article, the spectroscopic (ultraviolet-visible (UV-vis), electron-dispersing X-ray (EDX), and Fourier transform infrared (FT-IR)), microscopic (field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and atomic force microscope (AFM)), structural (X-ray diffractometer (XRD) and zetasizer), and analytic (thermogravimetric/differential thermal analyzer (TGA-DTA)) characterization of the silver nanoparticles (AgNPs) produced from Papaver rhoeas (PR) L. leaf extract are presented. PR-AgNPs are generally spherical and have a maximum surface plasmon resonance of 464.03 nm. The dimensions of the manufactured nanomaterial are in the range of 1.47-7.31 nm. PR-AgNPs have high thermal stability and a zeta potential of -36.1 mV. The minimum inhibitory concentration (MIC) values (mg L-1) of PR-AgNPs on Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans are 1.50, 0.75, 3.00, 6.00, and 0.37, respectively. In the study, the cytotoxic and proliferative effects of PR-AgNPs using the MTT (3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide) method on various cancer cell lines (CACO-2 (human colon adenocarcinoma cell), MCF-7 (human breast cancer cell), T98-G (glioblastoma multiforme cell), and healthy HUVEC (human umbilical vein endothelial cell)) cell lines are presented. After 24 and 48 h of the application, the half-maximum inhibitory concentration (IC50) values (µg mL-1) of PR-AgNPs on HUVEC, CACO-2, MCF-7, and T98-G lines are 2.365 and 2.380; 2.526 and 2.521; 3.274 and 3.318; 3.472 and 3.526, respectively. Comprehensive in vivo research of PR-AgNPs is proposed to reveal their potential for usage in sectors such as nanomedicine and nanochemistry.


Assuntos
Adenocarcinoma , Anti-Infecciosos , Antineoplásicos , Neoplasias do Colo , Nanopartículas Metálicas , Papaver , Humanos , Prata , Células CACO-2 , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
9.
Sci Rep ; 13(1): 14501, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666900

RESUMO

This study aimed to assess the impact of a prolonged carbapenem use-focused antimicrobial stewardship program (ASP) on antimicrobial consumption and clinical outcomes and to analyze factors affecting adherence to interventions. Patients prescribed carbapenems for ≥ 2 weeks received intervention. Interrupted time-series analysis was performed to compare antimicrobial consumption before and after intervention. Factors associated with non-adherence to intervention were investigated. Of 273 patients who were eligible for intervention, discontinuation or de-escalation was recommended in 256 (94.1%) and intervention was accepted in 136 (53.1%) patients. Before intervention, carbapenem consumption significantly increased to 1.14 days of therapy (DOT)/1000 patient days (PD)/month (P = 0.018). However, it significantly declined by - 2.01 DOT/1000 PD/month without an increase in other antibiotic consumption (P < 0.001). Factors affecting non-adherence to intervention were younger age (odds ratio [OR] = 0.98; 95% confidence interval [CI] 0.96-1.00), solid organ malignancy (OR = 2.53, 95% CI 1.16-5.50), and pneumonia (OR = 2.59, 95% CI 1.08-6.17). However, ASP intervention was not associated with clinical outcomes such as length of hospital stay or mortality. Prolonged carbapenem prescription-focused ASP significantly reduced carbapenem consumption without adverse outcomes. Non-adherence to interventions was attributed more to prescriber-related factors, such as attitude, than patient-related factors including clinical severity.


Assuntos
Anti-Infecciosos , Gestão de Antimicrobianos , Humanos , Carbapenêmicos/uso terapêutico , Antibacterianos/uso terapêutico , Terapia Comportamental
10.
Front Cell Infect Microbiol ; 13: 1205355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655297

RESUMO

Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.


Assuntos
Anti-Infecciosos , Doença de Moyamoya , Humanos , Ubiquitina-Proteína Ligases , Genes Reguladores , Fatores de Transcrição , Adenosina Trifosfatases
11.
Front Cell Infect Microbiol ; 13: 1224778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662011

RESUMO

Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation.


Assuntos
Actinobacteria , Anti-Infecciosos , Nanopartículas , Anti-Infecciosos/farmacologia , Agricultura , Sistemas de Liberação de Medicamentos
12.
Molecules ; 28(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687245

RESUMO

Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.


Assuntos
Anti-Infecciosos , Lavandula , Antioxidantes/farmacologia , Polônia , Anti-Infecciosos/farmacologia , Candida albicans , Extratos Vegetais/farmacologia
13.
Int J Oncol ; 63(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37681484

RESUMO

Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on ß­catenin­mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/ß­catenin signaling pathway by decreasing the nuclear translocation of ß­catenin and disrupting ß­catenin/T­cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine­rich G protein­coupled receptor­5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient­derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti­tumor activities in colorectal cancer by targeting the Wnt/ß­catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.


Assuntos
Anti-Infecciosos , Neoplasias Colorretais , Humanos , beta Catenina , Via de Sinalização Wnt , Neoplasias Colorretais/tratamento farmacológico
14.
Ulus Travma Acil Cerrahi Derg ; 29(9): 1032-1038, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681729

RESUMO

BACKGROUND: In this study, we aimed to determine the most appropriate antimicrobial agents for prophylactic antibiotic use during emergency and elective transurethral procedures. METHODS: The study was conducted in five hospitals located in five different geographical regions of Türkiye. The microorganism cultured in urine before emergency and elective transurethral procedures in these centers between March 2021 and March 2022 were reviewed retrospectively from the hospital records. Demographic data (age and gender) of the patients, comorbid disorders, previous urological procedures, anomalies of the urogenital tract, use of urethral catheters (permanent or clean intermittent catheterization), cultured microorganisms, and antibiotic susceptibilities were noted. The patients hospitalized or had antibiotics for any reason in the previous 1 month were excluded from the study. RESULTS: A total of 1450 patients, 742 men (51.2%) and 708 women (48.8%), were included in the study. The mean age of the patients was 55.3±19.36 (1-98) years. Diabetes mellitus was evident in 271 (18.7%) patients. The five most common microorgan-isms cultured in urine, in order of frequency, were: ESBL (-) Escherichia coli in 418 (28.8%), ESBL (+) E. coli in 309 (21.3%), Klebsiella pneumonia in 183 (12.6%), Enterococcus faecalis in 124 (8.6%), and Pseudomonas aeruginosa in 89 (6.1%). The susceptibility rates to antimicrobial agents recommended for prophylaxis by the American Urology Association and the European Association of Urology guidelines were found as follows: cefepime 87.1%, ampicillin+sulbactam 84%, TMP-SMX 71.6%, amoxicillin+clavulanate 63.5%, cefoxitin 59%, ceftazidime 58.6%, cefuroxime 43.5%, ceftriaxone 43%, and cefixime 38.4%. CONCLUSION: We found that currently recommended antimicrobials provide poor coverage for the most common pathogens isolated. Urologists should consider patient-based antibiotic prophylaxis in endoscopic urethral procedures, follow appropriate proto-cols, and consider local antibiotic resistance.


Assuntos
Anti-Infecciosos , Escherichia coli , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol
15.
Front Biosci (Landmark Ed) ; 28(8): 169, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37664941

RESUMO

BACKGROUND: Methods like the bio-synthesis of silver nanoparticles (Ag NPs) using plant extracts have become promising due to their eco-friendly approach. The study aimed to examine the utilization of Garcinia gummi-gutta fruit phytochemicals as agents in the biosynthesis of Ag NPs, evaluation of the antimicrobial, antioxidant, and anti-cancerous properties, as well as the photocatalytic ability of bio-synthesized Ag NPs against Crystal Violet (CV), a triphenylmethane dye. METHODS: The characterization of the physical properties of the Ag NPs synthesized via the green route was done using UV-Vis spectrophotometry (UV-Vis), X-ray Diffraction (XRD), Fourier Transform Infrared Spectrophotometry (FTIR), Scanning Electron Microscopy (SEM), Zeta potential analysis, and Transmission Electron Microscopy (TEM). The dye degradation efficiency of CV was determined using synthesized Ag NPs under UV light by analyzing the absorption maximum at 579 nm. The antimicrobial efficacy of Ag NPs against E. coli, S. aureus, Candida tropicalis, and Candida albicans was examined using the broth dilution method. The antioxidant and anti-cancer properties of the synthesized Ag NPs were assessed using the DPPH and MTT assays. RESULTS: The UV analysis revealed that the peak of synthesized Ag NPs was 442 nm. Data from FTIR, XRD, Zeta potential, SEM, and TEM analysis confirmed the formation of nanoparticles. The SEM and TEM analysis identified the presence of spherical nanoparticles with an average size of 29.12 nm and 24.18 nm, respectively. Maximum dye degradation efficiency of CV was observed at 90.08% after 320 min without any silver leaching, confirming the photocatalytic activity of Ag NPs. The bio-efficiency of the treatment was assessed using the Allium cepa root growth inhibition test, toxicity analysis on Vigna radiata, and Brine shrimp lethality assay. CONCLUSIONS: The findings revealed the environmentally friendly nature of green Ag NPs over physical/chemically synthesized Ag NPs. The synthesized Ag NPs can effectively be used in biomedical and photocatalytic applications.


Assuntos
Anti-Infecciosos , Garcinia , Nanopartículas Metálicas , Neoplasias , Antioxidantes/farmacologia , Prata/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Violeta Genciana
16.
Arch Virol ; 168(9): 238, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37660314

RESUMO

Acinetobacter baumannii is an important opportunistic pathogen, usually associated with immunocompromised individuals with a prolonged period of stay in a hospital. Currently, the incidence of multi-drug resistant A. baumannii (MDR-AB) and extensively drug-resistant A. baumannii (XDR-AB) is increasing rapidly in Thailand, mirroring the trend worldwide. Novel therapeutic approaches for the treatment of A. baumannii infection using bacteriophages are being evaluated, and the use of phage-derived peptides is being tested as alternative approach to fighting infection. In this study, we isolated and determined the biological features of a lytic A. baumannii phage called vB_AbaAut_ChT04 (vChT04). The vChT04 phage was classified as a member of the family Autographiviridae of the class Caudoviricetes. It showed a short latent period (10 min) and a large burst size (280 PFU cell-1), and it was able to infect 52 out of 150 clinical MDR-AB strains tested (34.67%). Most of the phage-sensitive strains were A. baumannii strains that had been isolated during the same year that the phage was isolated. The phage showed activity across a broad pH (pH 5.0-8.0) and temperature (4-37°C) range. Whole-genome analysis revealed that the vChT04 genome comprises 41,158 bp with a 39.3% GC content and contains 48 open reading frames (ORFs), 28 of which were assigned putative functions based on homology to previously identified phage genes. Comparative genomic analysis demonstrated that vChT04 had the highest similarity to phage vB_AbaP_WU2001, which was isolated in the southern part of Thailand. An endolysin gene found in the vChT04 genome was used to synthesize an antimicrobial peptide (designated as PLysChT04) and its antimicrobial activity was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. The MIC and MBC values of peptide PLysChT04 against MDR-AB and XDR-AB were 312.5-625 µg/mL, and it was able to inhibit both phage-susceptible and phage-resistant isolates collected over different time periods. PLysChT04 showed good efficacy in killing drug-resistant A. baumannii and other bacterial strains, and it is a promising candidate for development as an alternative therapeutic agent targeting A. baumannii infections.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Bacteriófagos , Caudovirales , Humanos , Bacteriófagos/genética , Acinetobacter baumannii/genética , Peptídeos
17.
Biomed Khim ; 69(4): 199-218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705481

RESUMO

The search and creation of innovative antimicrobial drugs, acting against resistant and multiresistant strains of bacteria and fungi, are one of the most important tasks of modern bioorganic chemistry and pharmaceuticals. Since iron is essential for the vital activity of almost all organisms, including mammals and bacteria, the proteins involved in its metabolism can serve as potential targets in the development of new promising antimicrobial agents. Such targets include endogenous mammalian biomolecules, heme oxygenases, siderophores, protein 24p3, as well as bacterial heme oxygenases and siderophores. Other proteins that are responsible for the delivery of iron to cells and its balance between bacteria and the host organism also attract certain particular interest. The review summarizes data on the development of inhibitors and inducers (activators) of heme oxygenases, selective for mammals and bacteria, and considers the characteristic features of their mechanisms of action and structure. Based on the reviewed literature data, it was concluded that the use of hemin, the most powerful hemooxygenase inducer, and its derivatives as potential antimicrobial and antiviral agents, in particular against COVID-19 and other dangerous infections, would be a promising approach. In this case, an important role is attributed to the products of hemin degradation formed by heme oxygenases in vitro and in vivo. Certain attention has been paid to the data on the antimicrobial action of iron-free protoporphyrinates, namely complexes with Co, Ga, Zn, Mn, their advantages and disadvantages compared to hemin. Modification of the well-known antibiotic ceftazidime with a siderophore molecule increased its effectiveness against resistant bacteria.


Assuntos
Anti-Infecciosos , COVID-19 , Animais , Antivirais/farmacologia , Hemina , Sideróforos/farmacologia , Anti-Infecciosos/farmacologia , Oxigenases , Mamíferos
19.
PLoS One ; 18(9): e0291363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682981

RESUMO

Cordyceps militaris is a medicinal mushroom and has been extensively used as a traditional medicine in East Asia. After the chrysalis seeds are matured and harvested, the spent substrate of C. militaris still contains active ingredients but is usually discarded as waste. This study aimed to determine the antioxidant and anti-inflammatory activities of C. militaris spent substrate extract and its inhibitory activity on the Malassezia commensal yeasts that can cause dandruff and seborrheic dermatitis. Active substances in the spent substrate of C. militaris were extracted using a hot water extraction method and were used for the determination of antioxidant activity by measuring their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radicals, hydrogen peroxide, and superoxide anions. The ability to inhibit Malassezia was analyzed using the broth microdilution method, and the reparative effect on oxidative damage in HaCaT cells was measured using in vitro cell analysis. Respiratory burst evaluation was used to determine the anti-inflammatory capacity of extracts. Analysis of the Malassezia-inhibiting activity of the extracts showed that the minimum inhibitory concentration was 6.25 mg/mL. The half maximal inhibitory concentration (IC50) values of DPPH, O2-, H2O2 and OH- were 3.845 mg/mL, 2.673 mg/mL, 0.037 mg/mL and 0.046 mg/mL, respectively. In the concentration range of 2 to 50%, the extract was non-toxic to cells and was able to protect HaCaT cells from H2O2 damage. When the volume fraction of the extract was 20.96%, its anti-inflammatory ability reached 50%. These results demonstrated that the extract may be a safe and efficacious source for pharmaceutical or cosmetic applications, with Malassezia-inhibiting, antioxidant and anti-inflammatory activities.


Assuntos
Anti-Infecciosos , Antineoplásicos , Cordyceps , Malassezia , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Anti-Inflamatórios/farmacologia
20.
PLoS One ; 18(9): e0282033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708168

RESUMO

Globally, traditional knowledge systems are a powerhouse of information which can revolutionise the world, if decoded accurately and logically. Plant-based ethno-traditional and folklore curatives/medicines has a firm basis in the psyche of the common masses of West Bengal and Holarrhena pubescens is a representative example of it. This article communication on depicting the anthelmintic efficacy of ethanolic extract and Ethyl acetate fraction of the stem bark of Holarrhena pubescens against the cestode Raillietina spp. through efficacy studies, ultra-structural observations, histochemical and biochemical analysis on some tegumental enzymes i.e., Acid Phosphatase (AcPase), Alkaline Phosphatase (AlkPase), Adenosine Triphosphatase (ATPase) and 5'-Nucleotidase (5'-Nu) along with Gray Level Co-occurrence Matrix (GLCM) analysis of histochemical study. Praziquantel was used as the reference drug. Investigations revealed 10mg/ml dosage of crude extract was the most efficacious dose and amongst the fractions the ethyl acetate fraction showed the most anthelmintic property. Ultrastructural studies through Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) clearly depicted the damage in head, sucker, proglottids, proximal and distal cytoplasm (DC), microtriches (MT), basal lamina (BL), nuclear membrane (NM), and, nucleolus (NL) in the treated worms. Histochemical studies revealed decrease in staining intensity for all the tegumental enzymes in the treated worms compared to control. The GLCM analysis strongly supported the result of histochemical studies. Biochemical studies revealed marked reduction in enzyme activity in the treated worms with maximum reduction in the activity of 5'- Nu (77.8%) followed by ATPase (63.17%).


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Cestoides , Holarrhena , Animais , Aves Domésticas , Anti-Helmínticos/farmacologia , Adenosina Trifosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA