Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.764
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. biol ; 84: e253696, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355862

RESUMO

Abstract Transplanting time and genotype contribute to improving crop yield and quality of eggplant (Solanum melongena L.). A field experiment was conducted to investigate the impact of foliar applied of triacontanol (TRIA) and eggplant genotypes 25919, Nirala, 28389 and Pak-10927,transplanted on 1 March,15 March, and 1 April on exposure to high air temperature conditions. The experiment was performed according to Randomized Complete Block Design and the data was analyzed by using Tuckey,s test . The TRIA was applied at 10µM at flowering stage; distilled water was used as the control. Rate of photosynthesis and transpiration, stomatal conductance, water use efficiency, and effects on antioxidative enzymes (superoxide dismutase, catalase and peroxidase) were evaluated. The 10µM TRIA increased photosynthesis rate and water use efficiency and yield was improved in all genotypes transplanted at the different dates. Foliar application of 10µM TRIA increased antioxidative enzyme activities (SOD, POD & CAT) and improved physiological as well as biochemical attributes of eggplant genotypes exposed to high heat conditions. Highest activity of dismutase enzyme 5.41mg/1g FW was recorded in Nirala genotype in second transplantation. Whereas, lowest was noted in PAK-10927 (2.30mg/g FW). Maximum fruit yield was found in accession 25919 (1.725kg per plant) at 1st transplantation with Triacontanol, whereas accession PAK-10927 gave the lowest yield (0.285 kg per plant) at control treatment on 3rd transplantation. Genotype, transplanting date and application of TRIA improved growth, yield and quality attributes under of heat stress in eggplant.


Resumo O tempo de transplante e o genótipo contribuem para melhorar a produtividade e a qualidade da cultura da berinjela (Solanum melongena L.). Um experimento de campo foi conduzido para investigar o impacto da aplicação foliar de triacontanol (TRIA) e genótipos de berinjela 25919, Nirala, 28389 e Pak-10927, transplantados em 1 de março, 15 de março e 1 de abril de exposição a condições de alta temperatura do ar. O experimento foi realizado de acordo com o Randomized Complete Block Design e os dados foram analisados pelo teste de Tuckey. O TRIA foi aplicado a 10 µM na fase de floração; água destilada foi utilizada como controle. Taxa de fotossíntese e transpiração, condutância estomática, eficiência do uso da água e efeitos sobre as enzimas antioxidantes (superóxido dismutase, catalase e peroxidase) foram avaliados. O TRIA 10 µM aumentou a taxa de fotossíntese e a eficiência do uso da água e o rendimento foi melhorado em todos os genótipos transplantados nas diferentes datas. A aplicação foliar de TRIA 10µM aumentou as atividades das enzimas antioxidantes (SOD, POD e CAT) e melhorou os atributos fisiológicos e bioquímicos de genótipos de berinjela expostos a condições de alto calor. A atividade mais elevada da enzima dismutase 5,41mg / 1g FW foi registrada no genótipo Nirala no segundo transplante. Considerando que o mais baixo foi observado em PAK-10927 (2,30 mg / g FW). A produtividade máxima de frutos foi encontrada no acesso 25919 (1,725 ​​kg por planta) no 1º transplante com Triacontanol, enquanto o acesso PAK-10927 deu a menor produção (0,285 kg por planta) no tratamento de controle no 3º transplante. Genótipo, data de transplante e aplicação de TRIA, melhoramento do crescimento, rendimento e atributos de qualidade sob estresse térmico em berinjela.


Assuntos
Solanum melongena/genética , Solanum melongena/metabolismo , Fotossíntese , Resposta ao Choque Térmico , Álcoois Graxos , Antioxidantes/metabolismo , Antioxidantes/farmacologia
2.
J Ethnopharmacol ; 318(Pt B): 116960, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517570

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Metabolic diseases are the major causes of macrovascular and microvascular complications which lead to morbidity and mortality. Traditionally, garlic has been used as food and medicine for more than 5000 years. However, efficacy studies have shown conflicting results regarding the garlic effect. AIM OF THE STUDY: This study aims to evaluate the efficacy of garlic on the components of metabolic syndrome (MetS) in metabolic disease patients. MATERIALS AND METHODS: This study was a systematic review and meta-analysis of randomized controlled trials (RCTs). Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), and Google scholar were searched till December 25, 2021 for identifying the relevant studies that have shown the effects of garlic on components of metabolic syndrome in metabolic disease patients. The mean difference with 95% CI was calculated using fixed-effect or random-effect models. RESULTS: The effect of garlic has shown significant changes on waist circumference (p-value= <0.0001), total cholesterol (p < 0.0001), low density lipoprotein (p = 0.01), high density lipoprotein (p < 0.00001), triglycerides (p < 0.00001), systolic blood pressure (p < 0.00001), diastolic blood pressure (p < 0.00001), glucose (p < 0.00001), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (p = 0.04), C-reactive protein (p < 0.00001), tumor necrosis factor (TNF)-α (p = 0.002), interleukin (IL)-6 (p = 0.0001). Subgroup analysis has shown the favorable effects of garlic in metabolic disease patients. CONCLUSION: Our meta-analysis results confirm the findings that garlic could be useful as an anti-hyperlipidemic, anti-hyperglycemic, anti-hypertensive and anti-inflammatory drug.


Assuntos
Produtos Biológicos , Alho , Síndrome Metabólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Pressão Sanguínea , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia
3.
J Ethnopharmacol ; 318(Pt B): 116974, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517571

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura & Migo is traditionally used to treat skin diseases, gastrointestinal diseases, and other diseases. Dendrobium officinale polysaccharides (DOP) are the main component of Dendrobium officinale that accounts for its bioactivity, which shows a variety of effects such as moisturizing, antioxidant and anti-fatigue. However, there is no comprehensive study on the effect of DOP on skin photoaging combined with in vitro and in vivo models, and its specific mechanism is still unclear. AIM OF THE STUDY: Our study aimed to explore the effect and underlying mechanism of DOP on skin photoaging, as well as to improve the stability and transdermal absorption of DOP. MATERIALS AND METHODS: DOP was extracted, purified and structurally characterized. In vitro HaCaT cell photoaging model was used to examine the photoprotection effect of DOP. Cell viability was detected by CCK-8; Intracellular reactive oxygen species were determined by DCFH-DA; DNA damage, cell apoptosis and cell cycle arrest were examined by flow cytocytometry. For autophagy flux detection, the adenovirus loaded with mRFP-GFP-LC3 was introduced into cells. Further, to enhance the stability and absorption of DOP, we designed and prepared the W/O/W type DOP multilayer emulsions (ME) by a two-step emulsification method. The emulsion stability, drug loading and encapsulation rate, DOP stability and DOP transdermal rate were detected. In vivo photoaging animal model was applied to compare the difference of photoaging protection effect between DOP solution and DOP ME. Specifically, skin appearance, histological change, antioxidant system, proinflammatory indicators, matrix metalloproteinases and autophagy level of skin tissues were examined and compared. RESULTS: The results showed that DOP achieve photoaging protection by inhibiting oxidative stress, alleviating cell cycle arrest and apoptosis, and enhancing autophagy flux in photoaged HaCaT cells. The W/O/W type DOP multilayer emulsion (ME) with high encapsulation rate and strong stability was found to significantly improve the stability and transdermal absorption of DOP. In addition, our results showed that DOP (ME) remarkably improved skin condition of photoaged mice. Specifically, DOP (ME) enhanced the expression of antioxidant enzymes and autophagy and decreased the levels of pro-inflammatory factors and matrix metalloproteinases in the skin of photoaged mice as compared with DOP solution. CONCLUSIONS: In conclusion, DOP was effective in improving skin photoaging, and the DOP multilayer emulsion we designed enhanced the stability and skin absorption of DOP, boosting DOP's protective effect against photoaging.


Assuntos
Dendrobium , Envelhecimento da Pele , Camundongos , Animais , Antioxidantes/farmacologia , Emulsões , Polissacarídeos/farmacologia , Metaloproteinases da Matriz
4.
J Ethnopharmacol ; 318(Pt B): 117009, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557936

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis hendersonii Hemsl. (CH), is a traditional Tibetan medicine used in highland areas for the treatment of alpine polycythemia, ulcers and various inflammatory diseases. Its antioxidant and anti-inflammatory effects have been demonstrated in experimental mice. Loss of dopaminergic neurons due to oxidative damage is thought to be an important factor in the development of PD, the potential antioxidant, anti-inflammatory effects of CH could potentially be used for PD treatment. AIM OF THE STUDY: To identify potential targets of CH using network pharmacology and to investigate the neuroprotective effects in cultured cell models and in MPTP-intoxicated mice. MATERIALS AND METHODS: The main chemical components of CH were analyzed by UPLC-MS/MS and their potential targets of action or signaling pathways were analyzed using network pharmacology. MPP + or LPS was added to SH-SY5Y or BV2 cells, respectively, to establish cellular models. MPTP was administered to C57BL/6J mice to induce inflammation and dopaminergic neuron loss as well as dyskinesia, followed by behavioral analysis to determine the role of CH in eliminating inflammation, avoiding neuron loss, and improving dyskinesia. RESULTS: CH contains 241 alkaloids, 213 flavonoids, 177 terpenoids and 114 phenolic compounds. The targets crossover between CH and PD yielded 210 potential therapeutic targets, especially growth factors and inflammatory pathway-related genes, such as BDNF, NF-κB, as potential key targets. In cultured cells, CHE eliminated MPP + -induced impairment of cell viability as well as LPS-induced inflammation, respectively. In mice, CHE ameliorated MPTP-induced dyskinesia and rescued the loss of dopaminergic neurons in the substantia nigra and striatum. Mechanistically, CHE effectively maintained the activity of the BDNF-TrkB/Akt signaling pathway, accordingly, inhibited inflammatory signaling pathways such as HIF-1α/PKM2 and Notch/NF-kB. CONCLUSIONS: CH performed well in eliminating inflammation and improving locomotor deficits in mice, and its potent active ingredients are worthy of subsequent research and development.


Assuntos
Corydalis , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antioxidantes/farmacologia , Cromatografia Líquida , Lipopolissacarídeos/farmacologia , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Neuroblastoma/tratamento farmacológico , Espectrometria de Massas em Tandem , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Neurônios Dopaminérgicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Modelos Animais de Doenças
5.
J Ethnopharmacol ; 318(Pt A): 116870, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423517

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Shaoyao San (DSS) has effective in treating hepatic ascites and liver disease. AIM OF THE STUDY: To explore the chemical characterization of DSS and protective effect on CCl4-induced hepatic fibrosis and its mechanism, especially its anti-oxidative stress and anti-inflammation. MATERIALS AND METHODS: The chemical characterization of DSS was determined by HPLC-Q-Exactive Orbitrap MS. And the antioxidant activity of DSS in vitro was determined. The hepatic fibrosis model was established using intragastric administration of 40% CCl4/soybean oil (v/v) twice weekly for 13 weeks. From 6th week, the DSS group and the positive control group were given DSS (2, 4, 8 g/kg/d) and silymarin (50 mg/kg/d), respectively. The livers of rats were examined histologically by H&E. The ALT, AST, ALB and TBIL were determined, and hepatic fibrosis markers (HA, LN, CIV, PIIINP), oxidative stress (SOD, MDA, GST, GSH) and inflammatory factor (IL-6, TNF-α) were tested using ELISA kits. In addition, the levels of TAC, TOS, LOOH and AOPP in the liver were also determined. RESULTS: The chemical characterization of DSS was determined by HPLC-Q-Exactive Orbitrap MS. The results show that DSS mainly includes triterpenoids, monoterpenes, phenols, sesquiterpenes, butyl phthalide, etc., and DSS has good antioxidant activity in vitro. In addition, the ALT, AST and TBIL of rats were remarkably reduced after treatment with DSS at three doses. Liver histopathological analysis showed that DSS alleviated the inflammatory infiltration, hepatocyte swelling, necrosis and hepatic fibrosis induced by CCl4. DSS significantly decreased HA, IV-C, PIIINP and LN. Further determination showed that DSS significantly increased TAC, OSI and decreased TOC, LOOH and MDA, indicating that DSS could regulate redox balance and reduce lipid peroxidation in vivo. DSS also increased the activity of GST, SOD and GSH concentration. In addition, DSS also reduced IL-6 and TNF-α. CONCLUSIONS: In this study, we described the chemical characterization of DSS and found that it has good antioxidant activity. We proved that DSS has the functions of reducing oxidative stress, anti-inflammatory, protecting liver cells and reducing hepatic fibrosis.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Estresse Oxidativo , Fígado , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Superóxido Dismutase/metabolismo , Tetracloreto de Carbono/farmacologia
6.
J Ethnopharmacol ; 318(Pt A): 116862, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437789

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asthma is a common chronic disease characterized by inflammation of the airways. One of the most devastating consequences of this inflammatory process is the production of reactive oxygen species responsible for oxidative stress. Nasturtium officinale commonly known as watercress has traditionally been applied in Iranian folk medicine to treat respiratory disorders and diseases mainly bronchitis and asthma. In accordance with these ethnopharmacological reports, through our previous in vivo experiment, we have confirmed significant effect of its hydroalcoholic extract in reducing lung inflammation and oxidative stress in an ovalbumin-induced asthmatic rat model. AIM OF THE STUDY: The aim of the present study was to investigate the anti-inflammatory and antioxidant effects of N. officinale hydroalcoholic extract (NOE) in patients with asthma, in order to confirm our findings of the previous performed in vivo study. MATERIAL AND METHODS: The NOE capsules (500 mg) were treated twice daily for 4 weeks as a supplementary treatment in a randomized, double-blind, and placebo-controlled trial in asthmatics. The primary outcome was Asthma Control Test score. The blood samples were taken at the beginning and end of the study. Then, the level of inflammatory markers, oxidative stress markers and antioxidant enzyme activity were measured. RESULTS: Treatment with NOE for one month caused a reduction in the levels of MDA, PCO and NO metabolite markers compared to the placebo group. In addition, FRAP levels as an indicator of total antioxidant capacity in the intervention group was significantly increased at the end of the treatment period compared to pre-treatment values. CONCLUSION: Findings demonstrated that NOE may have a therapeutic effect on asthma by improving oxidative stress. However, more studies are required to support these results. Moreover, bio-assay guided fractionation and isolation approach can be conducted to identify major bioactive compound/s.


Assuntos
Asma , Nasturtium , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Nasturtium/metabolismo , Irã (Geográfico) , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estresse Oxidativo , Asma/tratamento farmacológico
7.
J Ethnopharmacol ; 318(Pt A): 116911, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451488

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional system of medicine, Piper species, or its components are widely used to treat many diseases including memory improvement. One of the wild species Piper trioicum Roxb. (Piperaceae) is found in South Asian countries. The whole plant is used as folk medicine to improve memory. AIM OF THE STUDY: To our knowledge, no previous research has investigated the neuroprotective activities of P. trioicum. So, we studied the ameliorative effect of P. trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. MATERIALS AND METHODS: Wistar rats were exposed to scopolamine (3 mg/kg, i. p.) for 14 consecutive days, and the effect of P. trioicum (HAPT; oral, 300, 400 mg/kg) on scopolamine-invoked neurotoxicity in brain were studied. During the experimental period, behaviour analyses of rats were observed 30 min post-drug administration. The role of antioxidants of HAPT in scavenging cellular oxygen/peroxyl radicals were studied. Acetylcholinesterase and butyrylcholinesterase inhibitions, and mode of inhibition kinetics of HAPT were studied. Pathogenic cellular oxidative (MDA, GSH, SOD, and CAT), DNA damage (8-oxodG), neurochemical (acetyl- and, butyryl-cholinesterase), ß-secretase (BACE-1 and 2), MAPτ, and neuroinflammation (IL-6, TNF-α) biomarkers in extension to the histopathological observation of brain cortex were studied. GC-MS/MS analysis was carried out to investigate the presence of bioactive constituents in HAPT. RESULTS: HAPT, a rich source of phenol and flavonoid type antioxidants were responsible in quenching oxygen/peroxyl radicals and protected the cellular membrane, and lipoproteins against ROS in DPPH, ORAC, and CAPe tests. HAPT inhibited acetylcholinesterase and butyrylcholinesterase activities, and showed competitive-inhibition (reversible) towards cholinesterase activities. HAPT-400 significantly improved the learning and memory-impairment by restoring oxidative MDA, GSH, SOD, CAT, and DNA damage (8-oxodG) markers of serum, and cortex. It also improved acetyl- and, butyryl-cholinesterase, ß-secretase, and MAPτ level in brain by restoring proinflammatory cytokines IL-6, and TNF-α indicators in neurotoxic rats. GC-MS/MS reported therapeutic significance active compounds were molecular-docked towards target proteins, found that proscillaridin showed the highest affinity towards AChE, BuChE, BACE1, and BACE2 with binding energy of ΔGb -9.1, ΔGb -10.2, ΔGb -11.4 and ΔGb -11.5 Kcal/mol, respectively. Cymarin and morphine-3-glucuronide showed the second highest binding affinity towards AChE (ΔGb -8.8) and BuChE (ΔGb -10.0), respectively. In BACE-1, betulin showed the second highest binding affinity ΔGb -10.7 Kcal/mol and in BACE-2, morphine-3-glucuronide showed the second highest binding affinity ΔGb -9.8 Kcal/mol. CONCLUSIONS: Synergistic impact of proscillaridin, Cymarin, morphine-3-glucuronide, betulin like compounds in HAPT improved memory impairment, healing of tissue architecture of cortex with the restoration of neurochemical, neuroinflammation, and oxidative indicators in neurotoxic rats.


Assuntos
Piper , Proscilaridina , Ratos , Animais , Escopolamina/farmacologia , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Ratos Wistar , Piper/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Cimarina , Interleucina-6 , Doenças Neuroinflamatórias , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Superóxido Dismutase , Cognição , Oxigênio , Inibidores da Colinesterase/farmacologia
8.
J Ethnopharmacol ; 318(Pt A): 116881, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460029

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Petiveria alliacea L., commonly known as macura and gully root, is an important medicinal plant used in the Caribbean and Central America to treat ailments associated to the central nervous system, including poor memory. AIM OF THE STUDY: To assess the effects of the P. alliacea leaves methanol fraction (PMF) on a scopolamine-induced learning and memory impairment mouse model related to acetylcholinesterase activity and oxidative stress. MATERIAL AND METHODS: After PMF administration at doses of 500 or 900 mg/kg, cognitive ability was evaluated using the Morris water maze (MWM), Y-maze (YM) and novel object recognition (NOR) tests. The mouse brain tissue was further assessed for acetylcholinesterase activity and antioxidant activity. Levels of oxidative stress were also evaluated by measuring malondialdehyde (MDA) and glutathione activity. Acute toxicity was also evaluated. RESULTS: PMF led to memory improvement in the behavioral tests in mice with scopolamine-induced cognitive impairment. Moreover, PMF inhibited acetylcholinesterase activity and showed antioxidant potential that in turn attenuated cholinergic degradation. Additionally, PMF increased glutathione levels and glutathione reductase activity and reduced MDA levels in the brain. Moreover, no acute toxicity was detected with the use of PMF. CONCLUSION: In a mouse model of scopolamine-induced cognitive deficit, PMF exhibited protective effects, decreasing oxidative damage and regulating cholinergic function in the brain bearing significant memory enhancing potency. These data suggest that PMF is a promising candidate for developing therapies for neurodegenerative disorders.


Assuntos
Fármacos Neuroprotetores , Phytolaccaceae , Camundongos , Animais , Escopolamina/toxicidade , Acetilcolinesterase/metabolismo , Fármacos Neuroprotetores/efeitos adversos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Colinérgicos/farmacologia , Extratos Vegetais/efeitos adversos
9.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685966

RESUMO

Neutrophil extracellular traps (NETs) require reactive oxygen species (ROS) to eliminate pathogens by inducing oxidative stress. However, this process can also cause tissue damage to the host. Neutrophils contain high concentrations of vitamin C (1.5 mM) compared to the bloodstream (0.1 mM), and this antioxidant can interact with vitamin E and glutathione (GSH) inside the cell to maintain the redox balance. Previous studies have investigated the effect of vitamins E or C and N-acetyl cysteine (NAC) on NET formation, but the interactions of these molecules in neutrophils remain unknown. In this study, we investigated the effect of antioxidants alone and two combinations on NET formation and oxidative stress. Neutrophils were pre-loaded with GSH + NAC or vitamin E + vitamin C + GSH + NAC (termed ALL), and LPS-induced NET formation was assessed using fluorometry and immunofluorescence. Antioxidant effects were evaluated by measuring the total antioxidant capacity (TAC), GSH/GSSG ratio, ROS production, nitrite + nitrate levels, and lipid peroxidation. Our results showed that even low doses of antioxidants are capable of decreasing NETs. Furthermore, the combinations augmented TAC and GSH/GSSG ratio and decreased ROS, nitrites + nitrates, and malondialdehyde (MDA) levels in supplemented neutrophils in vitro.


Assuntos
Antioxidantes , Vitamina E , Cavalos , Animais , Antioxidantes/farmacologia , Vitamina E/farmacologia , Acetilcisteína/farmacologia , Lipopolissacarídeos/farmacologia , Dissulfeto de Glutationa , Espécies Reativas de Oxigênio , Glutationa , Ácido Ascórbico/farmacologia , Vitaminas , Suplementos Nutricionais
10.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685984

RESUMO

The increased generation of reactive oxygen species (ROS) by mitochondria under stress conditions leads to lipid peroxidation (LPO) as a consequence of the ROS interactions with polyunsaturated fatty acids in the lipid bilayer of cell membranes, causing their damage. It was assumed that chemical preparations that reduce the excessive ROS generation by mitochondria should exhibit protecting properties under oxidative-stress conditions. In this context, the antioxidants resveratrol (RSV) and 2-ethyl-6-methyl-3-hydroxypyridine N-acetylcysteinate (NAC-3-HP) were examined as potential chemical protectors upon the exposure to stress, able to maintain the functional state of mitochondria.


Assuntos
Antioxidantes , Bicamadas Lipídicas , Resveratrol/farmacologia , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Membrana Celular
11.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686082

RESUMO

Oxidative stress is linked to a series of diseases; therefore, the development of efficient antioxidants might be beneficial in preventing or ameliorating these conditions. Based on the structure of a previously reported compound with good antioxidant properties and on computational studies, we designed several catechol derivatives with enhanced antioxidant potential. The compounds were synthesized and physicochemically characterized, and their antioxidant activity was assessed through different antiradical, electron transfer and metal ions chelation assays, their electrochemical behavior and cytotoxicity were studied. The results obtained in the in vitro experiments correlated very well with the in silico studies; all final compounds presented very good antioxidant properties, generally superior to those of the reference compounds used. Similarly, the results obtained from studying the compounds' electrochemical behavior were in good agreement with the results of the antioxidant activity evaluation assays. Regarding the compounds' cytotoxicity, compound 7b had a dose-dependent inhibitory effect against all cell lines. In conclusion, through computer-aided design, we developed several catechol thiazolyl-hydrazones with excellent antioxidant properties, of which compound 7b, with two catechol moieties in its structure, exhibited the best antioxidant activity.


Assuntos
Antioxidantes , Desenho Assistido por Computador , Antioxidantes/farmacologia , Catecóis/farmacologia , Hidrazonas/farmacologia , Tiazóis
12.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686105

RESUMO

The reaction of 4-azido-quinolin-2(1H)-ones 1a-e with the active methylene compounds pentane-2,4-dione (2a), 1,3-diphenylpropane-1,3-dione (2b), and K2CO3 was investigated in this study. This approach afforded 4-(1,2,3-triazol-1-yl)quinolin-2(1H)-ones 3a-j in high yields and purity. All newly synthesized products' structures were identified. Compounds 3a-j were tested for antiproliferative activity against a panel of four cancer cell lines. In comparison to the reference erlotinib (GI50 = 33), compounds 3f-j were the most potent derivatives, with GI50 values ranging from 22 nM to 31 nM. The most effective antiproliferative derivatives, 3f-j, were subsequently investigated as possible multi-target inhibitors of EGFR, BRAFV600E, and EGFRT790M. Compound 3h was the most potent inhibitor of the studied molecular targets, with IC50 values of 57 nM, 68 nM, and 9.70 nM, respectively. The apoptotic assay results demonstrated that compounds 3g and 3h function as caspase-3, 8, and Bax activators as well as down-regulators of the antiapoptotic Bcl2, and hence can be classified as apoptotic inducers. Finally, compounds 3g and 3h displayed promising antioxidant activity at 10 µM, with DPPH radical scavenging of 70.6% and 73.5%, respectively, compared to Trolox (77.6%).


Assuntos
Antioxidantes , Neoplasias Pulmonares , Humanos , Antioxidantes/farmacologia , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases
13.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686262

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative pathology among progressive dementias, and it is characterized by the accumulation in the brain of extracellular aggregates of beta-amyloid proteins and neurofibrillary intracellular tangles consisting of τ-hyperphosphorylated proteins. Under normal conditions, beta-amyloid peptides exert important trophic and antioxidant roles, while their massive presence leads to a cascade of events culminating in the onset of AD. The fibrils of beta-amyloid proteins are formed by the process of fibrillogenesis that, starting from individual monomers of beta-amyloid, can generate polymers of this protein, constituting the hypothesis of the "amyloid cascade". To date, due to the lack of pharmacological treatment for AD without toxic side effects, chemical research is directed towards the realization of hybrid compounds that can act as an adjuvant in the treatment of this neurodegenerative pathology. The hybrid compounds used in this work include moieties of a hydroxytyrosol, a nitrohydroxytyrosol, a tyrosol, and a homovanillyl alcohol bound to the N-benzylpiperidine moiety of donepezil, the main drug used in AD. Previous experiments have shown different properties of these hybrids, including low toxicity and antioxidant and chelating activities. The purpose of this work was to test the effects of hybrid compounds mixed with Aß1-40 to induce fibrillogenesis and mimic AD pathogenesis. This condition has been studied both in test tubes and by an in vitro model of neuronal differentiated human SH-SY5Y neuroblastoma cells. The results obtained from test tube experiments showed that some hybrids inhibit the activity of the enzymes AChE, BuChE, and BACE-1. Cell experiments suggested that hybrids could inhibit fibrillogenesis, negatively modulating caspase-3. They were also shown to exert antioxidant effects, and the acetylated hybrids were found to be more functional and efficient than nonacetylated forms.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Donepezila/farmacologia , Antioxidantes/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas tau
14.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686273

RESUMO

Skin photoaging due to ultraviolet B (UVB) exposure generates reactive oxygen species (ROS) that increase matrix metalloproteinase (MMP). Chlorin e6-photodynamic therapy (Ce6-PDT), in addition to being the first-line treatment for malignancies, has been shown to lessen skin photoaging, while curcumin is well known for reducing the deleterious effects of ROS. In the current study, PDT with three novel Ce6-curcumin derivatives, a combination of Ce6 and curcumin with various linkers, including propane-1,3-diamine for Ce6-propane-curcumin; hexane-1,6-diamine for Ce6-hexane-curcumin; and 3,3'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) for Ce6-dipolyethylene glycol (diPEG)-curcumin, were studied for regulation of UVB-induced photoaging on human skin fibroblast (Hs68) and mouse embryonic fibroblast (BALB/c 3T3) cells. We assessed the antiphotoaging effects of Ce6-curcumin derivatives on cell viability, antioxidant activity, the mechanism of matrix metalloproteinase-1 and 2 (MMP-2) expression, and collagen synthesis in UVB-irradiated in vitro models. All three Ce6-curcumin derivatives were found to be non-phototoxic in the neutral red uptake phototoxicity test. We found that Ce6-hexane-curcumin-PDT and Ce6-propane-curcumin-associated PDT exhibited less cytotoxicity in Hs68 and BALB/c 3T3 fibroblast cell lines compared to Ce6-diPEG-curcumin-PDT. Ce6-diPEG-curcumin and Ce6-propane-curcumin-associated PDT showed superior antioxidant activity in Hs68 cell lines. Further, in UVB-irradiated in vitro models, the Ce6-diPEG-curcumin-PDT greatly attenuated the expression levels of MMP-1 and MMP-2 by blocking mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and tumor necrosis factor-α (NF-κB) signaling. Moreover, Ce6-diPEG-curcumin effectively inhibited inflammatory molecules, such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, while accelerating collagen synthesis. These results demonstrate that Ce6-diPEG-curcumin may be a potential therapy for treating skin photoaging.


Assuntos
Curcumina , Dermatite Fototóxica , Fotoquimioterapia , Animais , Camundongos , Humanos , Curcumina/farmacologia , Hexanos , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Propano , Espécies Reativas de Oxigênio , Fibroblastos , Glicóis , Colágeno
15.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687011

RESUMO

Plant-derived extracellular vesicles are functional nanovesicles that have significant applications in both disease prevention and treatment, as well as for use as drug carriers. Momordica charantia is a widely consumed food that has both medicinal and nutritional properties and has shown intervention in diabetes and inflammation caused by oxidative damage. In this study, Momordica charantia-derived extracellular vesicles (MCEVs) were extracted and demonstrated to have excellent antioxidant activity by characterization, lipid composition analysis, protein domain analysis, and in vitro antioxidant measurement. In addition, in vivo studies indicated that the MCEVs could restore ulcerative colitis by regulating oxidation and inflammatory factors. Therefore, the antioxidant properties of MCEVs may be important in protecting the colon from inflammation, which provides new insights into the application of MCEVs as drugs or vectors for intervention in ulcerative colitis.


Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Momordica charantia , Colite Ulcerativa/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Inflamação
16.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687008

RESUMO

Spirulina consists of a cluster of green-colored cyanobacteria; it is commonly consumed as a food or food supplement rich in bioactive compounds with antioxidant activity, predominantly C-phycocyanin (C-PC), which is related to anti-inflammatory action and anticancer potential when consumed frequently. After C-PC extraction, the Spirulina residual biomass (RB) is rich in proteins and fatty acids with the potential for developing food products, which is interesting from the circular economy perspective. The present work aimed to develop a vegan oil-in-water emulsion containing different contents of Spirulina RB, obtaining a product aligned with current food trends. Emulsions with 3.0% (w/w) of proteins were prepared with different chickpea and Spirulina RB ratios. Emulsifying properties were evaluated regarding texture and rheological properties, color, antioxidant activity, and droplet size distribution. The results showed that it was possible to formulate stable protein-rich emulsions using recovering matter rich in protein from Spirulina as an innovative food ingredient. All the concentrations used of the RB promoted the formulation of emulsions presenting interesting rheological parameters compared with a more traditional protein source such as chickpea. The emulsions were also a source of antioxidant compounds and maintained the color for at least 30 days after production.


Assuntos
Antioxidantes , Spirulina , Animais , Antioxidantes/farmacologia , Biomassa , Emulsões , Decapodiformes , Suplementos Nutricionais , Excipientes
17.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687064

RESUMO

Sambucus nigra L. has been used for centuries in traditional medicine thanks to its valuable healing properties. The healing properties result from its high content of biologically active compounds, mainly antioxidants, which contribute to its anti-inflammatory and anticancer properties. In our review, we have presented scientific studies evaluating the anti-inflammatory and anticancer effects of extracts and their components from S. nigra L. flowers and fruits. The results of the research show that the effect of antioxidant phytochemicals contained in their composition reduces the level of free radicals and pro-inflammatory cytokines, prevents mutations that increase the risk of cancer development, and inhibits cell proliferation, induction of apoptosis, and changes in intracellular signaling, consequently inhibiting the growth of malignant tumors and the formation of metastases. Flowers and fruits of S. nigra L. are a valuable source of nutraceutical and pharmacological substances that can support prevention and anti-inflammatory and oncological therapy without negative side effects for the patient.


Assuntos
Frutas , Sambucus nigra , Humanos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flores
18.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687079

RESUMO

Rutabaga, also known as swede and scientifically classified as Brassica napus napobrassica, is a biennial edible root vegetable that belongs to the Brassica genus and is widely cultivated in North Europe and North America. The present study highlights both the phytochemical profile and the in vitro biological properties of rutabaga seed extracts obtained through maceration using solvents of increasing polarity, namely, cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH), and water (H2O). HPLC-DAD was used to identify and quantify phenolic compounds, while volatile compounds were detected using GC-MS. The in vitro antioxidant capacity of the rutabaga seed extracts was evaluated through DPPH free radical scavenging activity. The in vitro anti-inflammatory activity (15-lipoxygenase (15-LOX) enzyme) was determined spectrophotometrically at the same concentration. Additionally, the cytotoxicity of the seed extracts was evaluated against human colon adenocarcinoma cells (Caco-2) and human embryonic kidney cells (HEK-293) using the MTT assay. The rutabaga seed extracts obtained from EtOAc, MeOH, and H2O were particularly rich in reducing sugars, ranging from 189.87 to 473.75 mg/g DW. The MeOH extract displayed the highest concentration of both sugars and polyphenols. Phytochemically, the HPLC-DAD analysis revealed the presence of four phenolic compounds in the tested extracts, including (±) synephrine, gallic acid, p-coumaric acid, and trans-ferulic acid, newly discovered in rutabaga organs. Moreover, a total of ten volatile compounds were identified through GC-MS analysis, both before and after derivatization. At a concentration of 50 µg/mL, the methanol extract exhibited high antioxidant activity with 52.95% inhibition, while CYHA, DCM, and EtOAc exhibited moderate anti-15-LOX activity with less than 30% inhibition. Except for DCM and aqueous extracts, rutabaga seeds did not exhibit any anti-proliferative potential against Caco-2 cell lines. Interestingly, no cytotoxicity was registered for any of the seed extracts against the normal cell line HEK-293. Overall, the obtained data highlight the potential utilization of rutabaga seeds as a source of bioactive compounds in various fields, including pharmaceuticals, nutraceuticals, and functional foods.


Assuntos
Adenocarcinoma , Brassica napus , Brassica , Neoplasias do Colo , Humanos , Células CACO-2 , Células HEK293 , Metanol , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia
19.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687076

RESUMO

Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.


Assuntos
Caesalpinia , Chalcona , Antioxidantes/farmacologia , Bebidas , Corantes , Carne
20.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687116

RESUMO

Hericium erinaceus (HE), a widely utilized natural remedy and dietary source, has garnered significant attention for its therapeutic potential in various diseases. In this study, we employed supercritical fluid extraction (SFE) technology to isolate the bioactive compounds from HE's fruiting body. Comprehensive assessments of the antioxidant and antibacterial activities were conducted, along with in vitro investigations on the human colon cancer cell line (HCT-8). The SFE rate served as the evaluation metric, while the variables of extraction time, pressure, and temperature were systematically examined. By integrating the response surface center composite design, we successfully optimized the extraction process, yielding optimal parameters of 80 min, 30 MPa, and 35 °C, thus resulting in an extraction rate of 2.51%. These optimized conditions exhibited considerable antioxidant capacity, anticancer activity, and antibacterial potential. Furthermore, we employed graded alcohol extraction to refine the crude extracts, thereby confirming superior anticancer effects under a 70% alcohol precipitation. To elucidate the composition, Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were employed to analyze the crude extracts and isolates of HE, facilitating a comparative analysis of six HE varieties. Our findings suggest that sterol derivatives hold promise as the active component against the colon cancer HCT-8 cell line. In conclusion, this study underscores the potential of HE SFE in the development of functional foods or alternative drugs for colon cancer treatment, thus opening new avenues for therapeutic interventions.


Assuntos
Besouros , Neoplasias do Colo , Humanos , Animais , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias do Colo/tratamento farmacológico , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA