Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.850.207
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Genes Dis ; 11(2): 921-934, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692474

RESUMO

Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), also known as lysine (K)-specific demethylase 6A (KDM6A), functions as a tumor suppressor gene or oncogene depending on the tumor type and context. However, its tumor-suppressive mechanisms remain largely unknown. Here, we investigated the clinical significance and biological effects of UTX expression in pancreatic ductal adenocarcinoma (PDA) and determined the potential mechanisms of its dysregulation. UTX expression and its association with clinicopathologic characteristics of PDA patients were analyzed using immunohistochemistry. UTX mRNA and protein expression and their regulation in PDA cell lines were measured using quantitative polymerase chain reaction and Western blot analyses. The biological functions of UTX in PDA cell growth, migration, and invasion were determined using gain- and loss-of-function assays with both in vitro and in vivo animal models. UTX expression was reduced in human PDA cell lines and specimens. Low UTX expression was associated with poor differentiation and prognosis in PDA. Forced UTX expression inhibited PDA proliferation, migration, and invasion in vitro and PDA growth and metastasis in vivo, whereas knockdown of UTX expression did the opposite. Mechanistically, UTX expression was trans-activated by GATA6 activation. GATA6-mediated PDA progression could be blocked, at least partially, by silencing UTX expression. In conclusion, loss of GATA6-mediated UTX expression was evident in human PDA and restored UTX expression suppressed PDA growth and metastasis. Thus, UTX is a tumor suppressor in PDA and may serve as a prognostic biomarker and therapeutic target.

4.
Genes Dis ; 11(2): 760-771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692482

RESUMO

Breast cancer is a molecularly heterogeneous disease and the most common female malignancy. In recent years, therapy approaches have evolved to accommodate molecular diversity, with a focus on more biologically based therapies to minimize negative consequences. To regulate cell fate in human breast cells, the Hippo signaling pathway has been associated with the alpha subtype of estrogen receptors. This pathway regulates tissue size, regeneration, and healing, as well as the survival of tissue-specific stem cells, proliferation, and apoptosis in a variety of organs, allowing for cell differentiation. Hippo signaling is mediated by the kinases MST1, MST2, LATS1, and LATS2, as well as the adaptor proteins SAV1 and MOB. These kinases phosphorylate the downstream effectors of the Hippo pathway, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ), suppressing the expression of their downstream target genes. The Hippo signaling pathway kinase cascade plays a significant role in all cancers. Understanding the principles of this kinase cascade would prevent the occurrence of breast cancer. In recent years, small noncoding RNAs, or microRNAs, have been implicated in the development of several malignancies, including breast cancer. The interconnections between miRNAs and Hippo signaling pathway core proteins in the breast, on the other hand, remain poorly understood. In this review, we focused on highlighting the Hippo signaling system, its key parts, its importance in breast cancer, and its regulation by miRNAs and other related pathways.

5.
Genes Dis ; 11(2): 614-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692477

RESUMO

An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.

6.
Genes Dis ; 11(2): 727-746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692481

RESUMO

Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/ß-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/ß-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/ß-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/ß-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/ß-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.

7.
Genes Dis ; 11(2): 747-759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692487

RESUMO

In the mammalian heart, cardiomyocytes are forced to withdraw from the cell cycle shortly after birth, limiting the ability of the heart to regenerate and repair. The development of multimodal regulation of cardiac proliferation has verified that pre-existing cardiomyocyte proliferation is an essential driver of cardiac renewal. With the continuous development of genetic lineage tracking technology, it has been revealed that cell cycle activity produces polyploid cardiomyocytes during the embryonic, juvenile, and adult stages of cardiogenesis, but newly formed mononucleated diploid cardiomyocytes also elevated sporadically during myocardial infarction. It implied that adult cardiomyocytes have a weak regenerative capacity under the condition of ischemia injury, which offers hope for the clinical treatment of myocardial infarction. However, the regeneration frequency and source of cardiomyocytes are still low, and the mechanism of regulating cardiomyocyte proliferation remains further explained. It is noteworthy to explore what force triggers endogenous cardiomyocyte proliferation and heart regeneration. Here, we focused on summarizing the recent research progress of emerging endogenous key modulators and crosstalk with other signaling pathways and furnished valuable insights into the internal mechanism of heart regeneration. In addition, myocardial transcription factors, non-coding RNAs, cyclins, and cell cycle-dependent kinases are involved in the multimodal regulation of pre-existing cardiomyocyte proliferation. Ultimately, awakening the myocardial proliferation endogenous modulator and regeneration pathways may be the final battlefield for the regenerative therapy of cardiovascular diseases.

9.
Genes Dis ; 11(2): 993-1008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692484

RESUMO

Chronic myeloid leukemia (CML) is a common adult leukemia. Both the acute phase of the disease and the adverse effects of anti-cancer treatments can lead to a poor prognosis. The N6-methyladenine (m6A) modification plays an important regulatory role in various physiological and pathological processes. KIAA1429 is a known m6A regulator, but the biological role of KIAA1429 in CML is unclear. In this study, we observed that the m6A levels and KIAA1429 expression were significantly up-regulated in patients with blast phase CML. Notably, KIAA1429 regulated the total level of RNA m6A modification in the CML cells and promoted the malignant biological behaviors of CML cells, including proliferation, migration, and imatinib resistance. Inhibiting KIAA1429 in CML cells reduced the stability of RAB27B mRNA through the m6A/YTHDF1 axis, consequently inhibiting CML proliferation and drug efflux, ultimately increasing the sensitivity of CML cells to imatinib. Moreover, the knockdown of RAB27B also inhibited the proliferation and drug resistance of CML cells and promoted their apoptosis. Rucaparib, a recently developed anti-cancer agent, suppressed the expression of KIAA1429 and CML cell proliferation and promoted cell apoptosis. Rucaparib also inhibited the tumorigenesis of CML cells in vivo. The combined use of rucaparib and imatinib enhanced the sensitivity of CML cells to imatinib. Our study provides evidence that elevated KIAA1429 expression in the blast phase of CML enhances the stability of RAB27B mRNA through the m6A/YTHDF1 axis to up-regulate RAB27B expression, thereby promoting CML progression. Rucaparib exerts inhibitory effects on KIAA1429 expression and thus reduces CML progression.

10.
Genes Dis ; 11(2): 847-860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692483

RESUMO

Gastric cancer (GC) is one of the most common and deadly cancers worldwide. Early detection offers the best chance for curative treatment and reducing its mortality. However, the optimal population-based early screening for GC remains unmet. Aberrant DNA methylation occurs in the early stage of GC, exhibiting cancer-specific genetic and epigenetic changes, and can be detected in the media such as blood, gastric juice, and feces, constituting a valuable biomarker for cancer early detection. Furthermore, DNA methylation is a stable epigenetic alteration, and many innovative methods have been developed to quantify it rapidly and accurately. Nonetheless, large-scale clinical validation of DNA methylation serving as tumor biomarkers is still lacking, precluding their implementation in clinical practice. In conclusion, after a critical analysis of the recent existing literature, we summarized the evolving roles of DNA methylation during GC occurrence, expounded the newly discovered noninvasive DNA methylation biomarkers for early detection of GC, and discussed its challenges and prospects in clinical applications.

12.
Genes Dis ; 11(2): 952-963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692492

RESUMO

Osteosarcoma is the most common primary malignancy of bones and primarily occurs in adolescents and young adults. However, a second smaller peak of osteosarcoma incidence was reported in the elderly aged more than 60. Elderly patients with osteosarcoma exhibit different characteristics compared to young patients, which usually results in a poor prognosis. The mechanism underlying osteosarcoma development in elderly patients is intriguing and of significant value in clinical applications. Senescent cells can accelerate tumor progression by metabolic reprogramming. Recent research has shown that methylmalonic acid (MMA) was significantly up-regulated in the serum of older individuals and played a central role in the development of aggressive characteristics. We found that the significant accumulation of MMA in elderly patients imparted proliferative potential to osteosarcoma cells. The expression of MAFB was excessively up-regulated in osteosarcoma specimens and was further enhanced in response to MMA accumulation as the patient aged. Specifically, we first confirmed a novel molecular mechanism between cellular senescence and cancer, in which the MMA-driven transcriptional reprogramming of the MAFB-NOTCH3 axis accelerated osteosarcoma progression via the activation of PI3K-AKT pathways. Moreover, the down-regulation of the MAFB-NOTCH3 axis increased the sensitivity and effect of AKT inhibitors in osteosarcoma through significant inhibition of AKT phosphorylation. In conclusion, we confirmed that MAFB is a novel age-dependent biomarker for osteosarcoma, and targeting the MAFB-NOTCH3 axis in combination with AKT inhibition can serve as a novel therapeutic strategy for elderly patients with osteosarcoma in experimental and clinical trials.

13.
Genes Dis ; 11(2): 1050-1065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692489

RESUMO

Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. Due to the poor prognosis and high mortality rate of the disease, it is urgent to develop new drugs with high efficacy and low toxicity to treat BC. Echinatin (Ecn) is a bioactive natural flavonoid oflicorice that has attracted special attention for its promising anti-tumor potential. Herein, we explored the inhibitory effects of Echinatin on BC cells and probed the possible molecular mechanism. We found that Ecnin vitro inhibited the proliferation, migration, and invasion, arrested the cell cycle at the G2/M phase, and promoted apoptosis in BC cells. Besides, Ecn had no notable cytotoxicity towards human normal cells. We subsequently confirmed that Ecn restrained xenograft tumor growth and metastasis of BC cells in vivo. Mechanistically, Ecn activated the p38 signaling pathway but inactivated the Wnt/ß-catenin signaling pathway, while over-expression of ß-catenin and the p38 inhibitor both attenuated the inhibitory effects of Ecn on BC cells. Remarkably, Ecn combined with cisplatin (DDP) or gemcitabine (Gem) had synergistic inhibitory effects on BC cells. In summary, our results validate that Ecn inhibits the tumor growth of human BC cells via p38 and Wnt/ß-catenin signaling pathways. More meaningfully, our results suggest a potential strategy to enhance DDP- or Gem-induced inhibitory effects on BC cells by combining with Ecn.

15.
Genes Dis ; 11(2): 890-920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692485

RESUMO

m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.

19.
Genes Dis ; 11(2): 830-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692500

RESUMO

Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.

20.
Genes Dis ; 11(2): 861-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692502

RESUMO

Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA