Your browser doesn't support javascript.
loading
Recruitment of a prostaglandin E receptor subtype, EP3-expressing bone marrow cells is crucial in wound-induced angiogenesis.
Kamoshita, Emi; Ikeda, Yasuhiro; Fujita, Mamoru; Amano, Hideki; Oikawa, Atsuhiko; Suzuki, Tastunori; Ogawa, Yasuhumi; Yamashina, Shohei; Azuma, Sadahiro; Narumiya, Shuh; Unno, Nobuya; Majima, Masataka.
Afiliación
  • Kamoshita E; Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 228-8555, Japan.
Am J Pathol ; 169(4): 1458-72, 2006 Oct.
Article en En | MEDLINE | ID: mdl-17003499
ABSTRACT
E-type prostaglandins have been reported to be proangiogenic in vivo. Thus, we examined prostaglandin receptor signaling relevant to wound-induced angiogenesis. Full-thickness skin wounds were created on the backs of mice, and angiogenesis in wound granulation tissues was estimated. Wound closure and re-epithelization in EP3 receptor knockout mice (EP3-/-) were significantly delayed compared with their wild-type (WT) mice, whereas those in EP1-/-, EP2-/-, and EP4-/- were not delayed. Wound-induced angiogenesis estimated with CD31 immunohistochemistry in EP3-/- mice was significantly inhibited compared with that in WT mice. Immunoreactive vascular endothelial growth factor (VEGF) in wound granulation tissues in EP3-/- mice was markedly less than that in WT mice. Wound closure in WT mice was delayed significantly by VEGF neutralizing antibody compared with control IgG. Wound-induced angiogenesis and wound closure were significantly suppressed in EP3-/- bone marrow transplantation mice compared with those in WT bone marrow transplantation mice. These were accompanied with the reductions in accumulation of VEGF-expressing cells in wound granulation tissues and in mobilization of VEGF receptor 1-expressing leukocytes in peripheral circulation. These results indicate that the recruitment of EP3-expressing cells to wound granulation tissues is critical for surgical wound healing and angiogenesis via up-regulation of VEGF.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Piel / Cicatrización de Heridas / Células de la Médula Ósea / Receptores de Prostaglandina E / Neovascularización Fisiológica Límite: Animals Idioma: En Revista: Am J Pathol Año: 2006 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Asunto principal: Piel / Cicatrización de Heridas / Células de la Médula Ósea / Receptores de Prostaglandina E / Neovascularización Fisiológica Límite: Animals Idioma: En Revista: Am J Pathol Año: 2006 Tipo del documento: Article País de afiliación: Japón