Functional normalization of 450k methylation array data improves replication in large cancer studies.
Genome Biol
; 15(12): 503, 2014 Dec 03.
Article
en En
| MEDLINE
| ID: mdl-25599564
We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case-control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.
Texto completo:
1
Colección:
01-internacional
Asunto principal:
Metilación de ADN
/
Análisis de Secuencia por Matrices de Oligonucleótidos
/
Neoplasias
Tipo de estudio:
Observational_studies
Límite:
Humans
Idioma:
En
Revista:
Genome biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2014
Tipo del documento:
Article