Your browser doesn't support javascript.
loading
TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection.
Girkin, Jason L; Hatchwell, Luke M; Collison, Adam M; Starkey, Malcolm R; Hansbro, Philip M; Yagita, Hideo; Foster, Paul S; Mattes, Joerg.
Afiliación
  • Girkin JL; Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Hatchwell LM; Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Collison AM; Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Starkey MR; Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Hansbro PM; Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Yagita H; Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Foster PS; Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
  • Mattes J; Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L89-L99, 2017 01 01.
Article en En | MEDLINE | ID: mdl-27836899
ABSTRACT
the aim of this study is to elucidate the role of TRAIL during rhinovirus (RV) infection in vivo. Naïve wild-type and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-deficient (Tnfsf10-/-) BALB/c mice were infected intranasally with RV1B. In separate experiments, Tnfsf10-/- mice were sensitized and challenged via the airway route with house dust mite (HDM) to induce allergic airways disease and then challenged with RVIB or UV-RVIB. Airway hyperreactivity (AHR) was invasively assessed as total airways resistance in response to increasing methacholine challenge and inflammation was assessed in bronchoalveolar lavage fluid at multiple time points postinfection. Chemokines were quantified by ELISA of whole lung lysates and viral load was determined by quantitative RT-PCR and tissue culture infective dose (TCID50). Human airway epithelial cells (BEAS2B) were infected with RV1B and stimulated with recombinant TRAIL or neutralizing anti-TRAIL antibodies and viral titer assessed by TCID50 HDM-challenged Tnfsf10-/- mice were protected against RV-induced AHR and had suppressed cellular infiltration in the airways upon RV infection. Chemokine C-X-C-motif ligand 2 (CXCL2) production was suppressed in naïve Tnfsf10-/- mice infected with RV1B, with less RV1B detected 24 h postinfection. This was associated with reduced apoptotic cell death and a reduction of interferon (IFN)-λ2/3 but not IFN-α or IFN-ß. TRAIL stimulation increased, whereas anti-TRAIL antibodies reduced viral replication in RV1B-infected BEAS2B cells in vitro. In conclusion, TRAIL promotes RV-induced AHR, inflammation and RV1B replication, implicating this molecule and its downstream signaling pathways as a possible target for the amelioration of RV1B-induced allergic and nonallergic lung inflammation and AHR.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Rhinovirus / Transducción de Señal / Infecciones por Picornaviridae / Ligando Inductor de Apoptosis Relacionado con TNF / Inflamación Tipo de estudio: Prognostic_studies Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Asunto principal: Rhinovirus / Transducción de Señal / Infecciones por Picornaviridae / Ligando Inductor de Apoptosis Relacionado con TNF / Inflamación Tipo de estudio: Prognostic_studies Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Australia