Your browser doesn't support javascript.
loading
Gene-by-Environment Interaction of Bcrp-/- and Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Alters SN-38 Disposition.
Toth, Erica L; Li, Hui; Dzierlenga, Anika L; Clarke, John D; Vildhede, Anna; Goedken, Michael; Cherrington, Nathan J.
Afiliación
  • Toth EL; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Li H; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Dzierlenga AL; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Clarke JD; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Vildhede A; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Goedken M; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
  • Cherrington NJ; Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development
Drug Metab Dispos ; 46(11): 1478-1486, 2018 11.
Article en En | MEDLINE | ID: mdl-30166404
ABSTRACT
Disease progression to nonalcoholic steatohepatitis (NASH) has profound effects on the expression and function of drug-metabolizing enzymes and transporters, which provide a mechanistic basis for variable drug response. Breast cancer resistance protein (BCRP), a biliary efflux transporter, exhibits increased liver mRNA expression in NASH patients and preclinical NASH models, but the impact on function is unknown. It was shown that the transport capacity of multidrug resistance protein 2 (MRP2) is decreased in NASH. SN-38, the active irinotecan metabolite, is reported to be a substrate for Bcrp, whereas SN-38 glucuronide (SN-38G) is a Mrp2 substrate. The purpose of this study was to determine the function of Bcrp in NASH through alterations in the disposition of SN-38 and SN-38G in a Bcrp knockout (Bcrp-/- KO) and methionine- and choline-deficient (MCD) model of NASH. Sprague Dawley [wild-type (WT)] rats and Bcrp-/- rats were fed either a methionine- and choline-sufficient (control) or MCD diet for 8 weeks to induce NASH. SN-38 (10 mg/kg) was administered i.v., and blood and bile were collected for quantification by liquid chromatography-tandem mass spectrometry. In Bcrp-/- rats on the MCD diet, biliary efflux of SN-38 decreased to 31.9%, and efflux of SN-38G decreased to 38.7% of control, but WT-MCD and KO-Control were unaffected. These data indicate that Bcrp is not solely responsible for SN-38 biliary efflux, but rather implicate a combined role for BCRP and MRP2. Furthermore, the disposition of SN-38 and SN-38G is altered by Bcrp-/- and NASH in a gene-by-environment interaction and may result in variable drug response to irinotecan therapy in polymorphic patients.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Colina / Deficiencia de Colina / Enfermedad del Hígado Graso no Alcohólico / Irinotecán / Metionina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Colina / Deficiencia de Colina / Enfermedad del Hígado Graso no Alcohólico / Irinotecán / Metionina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article