Your browser doesn't support javascript.
loading
Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism.
Aregger, Michael; Lawson, Keith A; Billmann, Maximillian; Costanzo, Michael; Tong, Amy H Y; Chan, Katherine; Rahman, Mahfuzur; Brown, Kevin R; Ross, Catherine; Usaj, Matej; Nedyalkova, Lucy; Sizova, Olga; Habsid, Andrea; Pawling, Judy; Lin, Zhen-Yuan; Abdouni, Hala; Wong, Cassandra J; Weiss, Alexander; Mero, Patricia; Dennis, James W; Gingras, Anne-Claude; Myers, Chad L; Andrews, Brenda J; Boone, Charles; Moffat, Jason.
Afiliación
  • Aregger M; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Lawson KA; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Billmann M; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Costanzo M; Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
  • Tong AHY; Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
  • Chan K; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Rahman M; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Brown KR; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Ross C; Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
  • Usaj M; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Nedyalkova L; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Sizova O; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Habsid A; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Pawling J; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Lin ZY; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Abdouni H; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Wong CJ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Weiss A; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Mero P; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Dennis JW; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Gingras AC; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Myers CL; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Andrews BJ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Boone C; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Moffat J; Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA. cmyers@cs.umn.edu.
Nat Metab ; 2(6): 499-513, 2020 06.
Article en En | MEDLINE | ID: mdl-32694731
ABSTRACT
The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Metabolismo de los Lípidos / Ácidos Grasos / Proteínas de la Membrana Límite: Humans Idioma: En Revista: Nat Metab Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Asunto principal: Metabolismo de los Lípidos / Ácidos Grasos / Proteínas de la Membrana Límite: Humans Idioma: En Revista: Nat Metab Año: 2020 Tipo del documento: Article País de afiliación: Canadá