Your browser doesn't support javascript.
loading
The NO-cGMP-PKG pathway in skeletal remodeling.
Kim, Se-Min; Yuen, Tony; Iqbal, Jameel; Rubin, Mishaela R; Zaidi, Mone.
Afiliación
  • Kim SM; The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
  • Yuen T; The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
  • Iqbal J; The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
  • Rubin MR; Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York.
  • Zaidi M; The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
Ann N Y Acad Sci ; 1487(1): 21-30, 2021 03.
Article en En | MEDLINE | ID: mdl-32860248
ABSTRACT
The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway plays a critical role in skeletal homeostasis. Preclinical data using NO and its donors and genetically modified mice demonstrated that NO was required in bone remodeling and partly mediated the anabolic effects of mechanical stimuli and estrogen. However, the off-target effects and tachyphylaxis of NO limit its long-term use, and previous clinical trials using organic nitrates for osteoporosis have been disappointing. Among the other components in the downstream pathway, targeting cGMP-specific phosphodiesterase to promote the NO-cGMP-PKG signal is a viable option. There are growing in vitro and in vivo data that, among many other PDE families, PDE5A is highly expressed in skeletal tissue, and inhibiting PDE5A using currently available PDE5A inhibitors might increase the osteoanabolic signal and protect the skeleton. These preclinical data open the possibility of repurposing PDE5A inhibitors for treating osteoporosis. Further research is needed to address the primary target bone cell of PDE5A inhibition, the contribution of direct and indirect effects of PDE5A inhibition, and the pathophysiological changes in skeletal PDE5A expression in aging and hypogonadal animal models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Remodelación Ósea / Proteínas Quinasas Dependientes de GMP Cíclico / GMP Cíclico / Óxido Nítrico Límite: Animals / Humans Idioma: En Revista: Ann N Y Acad Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Remodelación Ósea / Proteínas Quinasas Dependientes de GMP Cíclico / GMP Cíclico / Óxido Nítrico Límite: Animals / Humans Idioma: En Revista: Ann N Y Acad Sci Año: 2021 Tipo del documento: Article