Your browser doesn't support javascript.
loading
Handling deviating control values in concentration-response curves.
Kappenberg, Franziska; Brecklinghaus, Tim; Albrecht, Wiebke; Blum, Jonathan; van der Wurp, Carola; Leist, Marcel; Hengstler, Jan G; Rahnenführer, Jörg.
Afiliación
  • Kappenberg F; Department of Statistics, TU Dortmund University, 44221, Dortmund, Germany. kappenberg@statistik.tu-dortmund.de.
  • Brecklinghaus T; Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, 44139, Dortmund, Germany.
  • Albrecht W; Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, 44139, Dortmund, Germany.
  • Blum J; Department of Biology, University of Konstanz, 78457, Constance, Germany.
  • van der Wurp C; Department of Statistics, TU Dortmund University, 44221, Dortmund, Germany.
  • Leist M; Department of Biology, University of Konstanz, 78457, Constance, Germany.
  • Hengstler JG; Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, 44139, Dortmund, Germany.
  • Rahnenführer J; Department of Statistics, TU Dortmund University, 44221, Dortmund, Germany.
Arch Toxicol ; 94(11): 3787-3798, 2020 11.
Article en En | MEDLINE | ID: mdl-32965549
In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Técnicas In Vitro / Algoritmos / Modelos Estadísticos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Arch toxicol Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Asunto principal: Técnicas In Vitro / Algoritmos / Modelos Estadísticos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Arch toxicol Año: 2020 Tipo del documento: Article País de afiliación: Alemania