Your browser doesn't support javascript.
loading
Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing.
Zmejkoski, Danica Z; Markovic, Zoran M; Mitic, Dijana D; Zdravkovic, Nemanja M; Kozyrovska, Natalia O; Bugárová, Nikol; Todorovic Markovic, Biljana M.
Afiliación
  • Zmejkoski DZ; Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
  • Markovic ZM; Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
  • Mitic DD; Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia.
  • Zdravkovic NM; Scientific Veterinary Institute of Serbia, Department for Bacteriology and Parasitology, Belgrade, Serbia.
  • Kozyrovska NO; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
  • Bugárová N; Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia.
  • Todorovic Markovic BM; Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
J Biomed Mater Res B Appl Biomater ; 110(8): 1796-1805, 2022 08.
Article en En | MEDLINE | ID: mdl-35191591
ABSTRACT
The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Puntos Cuánticos / Staphylococcus aureus Resistente a Meticilina / Grafito Límite: Humans Idioma: En Revista: J Biomed Mater Res B Appl Biomater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Puntos Cuánticos / Staphylococcus aureus Resistente a Meticilina / Grafito Límite: Humans Idioma: En Revista: J Biomed Mater Res B Appl Biomater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article