Your browser doesn't support javascript.
loading
Active and passive drug release by self-assembled lubricin (PRG4) anti-fouling coatings.
Manasa, Clayton S; Silva, Saimon M; Caballero-Aguilar, Lilith M; Quigley, Anita F; Kapsa, Robert M I; Greene, George W; Moulton, Simon E.
Afiliación
  • Manasa CS; School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia.
  • Silva SM; School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victori
  • Caballero-Aguilar LM; School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia.
  • Quigley AF; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia; Department of Medicine, St Vincent's Hospital Melbourne, Fitzroy 3065, Melbourne, A
  • Kapsa RMI; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia; Department of Medicine, St Vincent's Hospital Melbourne, Fitzroy 3065, Melbourne, A
  • Greene GW; Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds, Victoria 3216, Australia. Electronic address: wren.greene@deakin.edu.au.
  • Moulton SE; School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victori
J Control Release ; 352: 35-46, 2022 12.
Article en En | MEDLINE | ID: mdl-36228955
ABSTRACT
Electroactive polymers (EAPs) have been investigated as materials for use in a range of biomedical applications, ranging from cell culture, electrical stimulation of cultured cells as well as controlled delivery of growth factors and drugs. Despite their excellent drug delivery ability, EAPs are susceptible to biofouling thus they often require surface functionalisation with antifouling coatings to limit unwanted non-specific protein adsorption. Here we demonstrate the surface modification of para toluene sulfonate (pTS) doped polypyrrole with the glycoprotein lubricin (LUB) to produce a self-assembled coating that both prevents surface biofouling while also serving as a high-capacity reservoir for cationic drugs which can then be released passively via diffusion or actively via an applied electrical potential. We carried out our investigation in two parts where we initially assessed the antifouling and cationic drug delivery ability of LUB tethered on a gold surface using quartz crystal microbalance with dissipation monitoring (QCM) to monitor molecular interactions occurring on a gold sensor surface. After confirming the ability of tethered LUB nano brush layers on a gold surface, we introduced an electrochemically grown EAP layer to act as the immobilisation surface for LUB before subsequently introducing the cationic drug doxorubicin hydrochloride (DOX). The release of cationic drug was then investigated under passive and electrochemically stimulated conditions. High-performance liquid chromatography (HPLC) was then carried out to quantify the amount of DOX released. It was shown that the amount of DOX released from nano brush layers of LUB tethered on gold and EAP surfaces could be increased by up to 30% per minute by applying a positive electrochemically stimulating pulse at 0.8 V for one minute. Using bovine serum albumin (BSA), we show that DOX loaded LUB tethered on para toluene sulfonic acid (pTS) doped polypyrrole retained antifouling ability of up to 75% when compared to unloaded tethered LUB. This work demonstrates the unique, novel ability of tethered LUB to actively participate in the delivery of cationic therapeutics on different substrate surfaces. This study could lead to the development of versatile multifunctional biomaterials for use in wide range of biomedical applications, such as dual drug delivery and lubricating coatings, dual drug delivery and antifouling coatings, cellular recording and stimulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Incrustaciones Biológicas Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Asunto principal: Incrustaciones Biológicas Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Australia