Your browser doesn't support javascript.
loading
Ginsenoside Rh2 inhibits CBP/p300-mediated FOXO3a acetylation and epilepsy-induced oxidative damage via the FOXO3a-KEAP1-NRF2 pathway.
Wu, Jingheng; Wang, Shuai; Zhao, Wujun; Li, Miaomiao; Li, Shaoyi.
Afiliación
  • Wu J; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
  • Wang S; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
  • Zhao W; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
  • Li M; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
  • Li S; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China. Electronic address: lishaoyi2097@163.com.
Eur J Pharmacol ; 940: 175391, 2023 Feb 05.
Article en En | MEDLINE | ID: mdl-36400161
ABSTRACT
Epilepsy is a chronic disease that affects a wide range of people. Furthermore, a third of patients suffering from epileptic seizures do not respond to antiepileptic drugs. In recent years, increasing attention has focused on the role of oxidative stress in acquired epilepsy, and adjuvant antiepileptic drugs to reduce oxidative stress may be a new therapeutic strategy. In this study ginsenoside Rh2 was resistant to oxidative stress induced by epileptic activity in vivo and in vitro. Using online databases, we identified forkhead box O3a (FOXO3a) overexpression in epilepsy tissue and validated this in vitro, in vivo, and in clinical tissues of patients with epilepsy. An in vitro epilepsy model revealed that the overexpression of FOXO3a led to more severe oxidative stress, while the knockdown of FOXO3a had a protective effect on SH-SY5Y cells. Moreover, our results showed that the positive effect of FOXO3a on oxidative stress was caused by the transcriptional activation of Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of nuclear factor erythroid 2-related factor 2 (NRF2). We also found that ginsenoside Rh2 can directly inhibit the activation of FOXO3a by selectively blocking CREB-binding protein (CBP)/p300-mediated FOXO3a acetylation and play a role in regulating the KEAP1-NRF2 pathway to resist oxidative stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Epilepsia / Neuroblastoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Eur J Pharmacol Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Asunto principal: Epilepsia / Neuroblastoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Eur J Pharmacol Año: 2023 Tipo del documento: Article País de afiliación: China