Your browser doesn't support javascript.
loading
Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction.
Lost, Jan; Verma, Tej; Jekel, Leon; von Reppert, Marc; Tillmanns, Niklas; Merkaj, Sara; Petersen, Gabriel Cassinelli; Bahar, Ryan; Gordem, Ayyüce; Haider, Muhammad A; Subramanian, Harry; Brim, Waverly; Ikuta, Ichiro; Omuro, Antonio; Conte, Gian Marco; Marquez-Nostra, Bernadette V; Avesta, Arman; Bousabarah, Khaled; Nabavizadeh, Ali; Kazerooni, Anahita Fathi; Aneja, Sanjay; Bakas, Spyridon; Lin, MingDe; Sabel, Michael; Aboian, Mariam.
Afiliación
  • Lost J; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Verma T; Department of Neurosurgery (J.L., M.S.), Heinrich-Heine-University, Duesseldorf, Germany.
  • Jekel L; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • von Reppert M; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Tillmanns N; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Merkaj S; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Petersen GC; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Bahar R; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Gordem A; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Haider MA; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Subramanian H; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Brim W; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Ikuta I; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Omuro A; Department of Radiology (I.I.), Mayo Clinic Arizona, Phoenix, Arizona.
  • Conte GM; Department of Neurology and Yale Cancer Center (A.O.), Yale School of Medicine, New Haven, Connecticut.
  • Marquez-Nostra BV; Department of Radiology (G.M.C.), Mayo Clinic, Rochester, Minesotta.
  • Avesta A; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Bousabarah K; From the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut.
  • Nabavizadeh A; Visage Imaging Inc (K.B., M.L.), San Diego, California.
  • Kazerooni AF; Department of Radiology (A.N.), Perelman School of Medicine, Hospital of University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania.
  • Aneja S; Department of Neurosurgery (A.F.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • Bakas S; Division of Neurosurgery (A.F.K.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
  • Lin M; Center for Data-Driven Discovery (A.F.K.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
  • Sabel M; Department of Therapeutic Radiology (S.A), Yale School of Medicine, New Haven, Connecticut.
  • Aboian M; Center for Biomedical Image Computing and Analytics (S.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
AJNR Am J Neuroradiol ; 44(10): 1126-1134, 2023 10.
Article en En | MEDLINE | ID: mdl-37770204
ABSTRACT

BACKGROUND:

The molecular profile of gliomas is a prognostic indicator for survival, driving clinical decision-making for treatment. Pathology-based molecular diagnosis is challenging because of the invasiveness of the procedure, exclusion from neoadjuvant therapy options, and the heterogeneous nature of the tumor.

PURPOSE:

We performed a systematic review of algorithms that predict molecular subtypes of gliomas from MR Imaging. DATA SOURCES Data sources were Ovid Embase, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science. STUDY SELECTION Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 12,318 abstracts were screened and 1323 underwent full-text review, with 85 articles meeting the inclusion criteria. DATA

ANALYSIS:

We compared prediction results from different machine learning approaches for predicting molecular subtypes of gliomas. Bias analysis was conducted for each study, following the Prediction model Risk Of Bias Assessment Tool (PROBAST) guidelines. DATA

SYNTHESIS:

Isocitrate dehydrogenase mutation status was reported with an area under the curve and accuracy of 0.88 and 85% in internal validation and 0.86 and 87% in limited external validation data sets, respectively. For the prediction of O6-methylguanine-DNA methyltransferase promoter methylation, the area under the curve and accuracy in internal validation data sets were 0.79 and 77%, and in limited external validation, 0.89 and 83%, respectively. PROBAST scoring demonstrated high bias in all articles.

LIMITATIONS:

The low number of external validation and studies with incomplete data resulted in unequal data analysis. Comparing the best prediction pipelines of each study may introduce bias.

CONCLUSIONS:

While the high area under the curve and accuracy for the prediction of molecular subtypes of gliomas are reported in internal and external validation data sets, limited use of external validation and the increased risk of bias in all articles may present obstacles for clinical translation of these techniques.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Glioma Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Systematic_reviews Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Glioma Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Systematic_reviews Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2023 Tipo del documento: Article