Your browser doesn't support javascript.
loading
Hesperidin Inhibits Oral Cancer Cell Growth via Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In Vitro and In Silico Analyses.
Jayaraman, Selvaraj; Natararaj, Sathanraj; Veeraraghavan, Vishnu Priya.
Afiliación
  • Jayaraman S; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Natararaj S; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Veeraraghavan VP; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
Cureus ; 16(2): e53458, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38435153
ABSTRACT
Background Oral carcinoma presents a significant health challenge, prompting the need for innovative therapeutic approaches. Elevation of inflammatory mediators, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), has promoted cellular proliferation, inhibited apoptosis, and fostered oral cancer progression through complex signaling pathways. Hesperidin, a flavanone glycoside found in citrus fruits, is of keen interest in this study as it has been proven to have multiple health benefits through in vivo and in vitro studies. However, the mechanism behind the anticancer activity of hesperidin in oral carcinoma remains obscure. Aim The study aimed to explore the anticancer potential of hesperidin on human oral cancer cells (KB cells) by modulating pro-inflammatory and apoptotic signaling mechanisms. Methods Cancer cell growth inhibitory activity was assessed using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Gene expression analysis was performed using real-time RT-PCR analysis. In addition, in silico docking analysis was conducted to confirm the binding affinity of hesperidin with pro-inflammatory and apoptosis signaling molecules. The data were analyzed using one-way ANOVA and the "t" test. Results Utilizing the MTT assay, a dose-dependent cytotoxic effect of hesperidin was unveiled, with a remarkable IC50 value indicative of its potent inhibition of cell proliferation. Complementing these findings (p<0.05), qRT-PCR analysis demonstrated hesperidin's regulatory influence on key molecular targets within the KB cell line. Hesperidin treatment resulted in a noteworthy reduction in TNF-α, interleukin-1 beta (IL-1-ß), IL-6, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and B-cell lymphoma 2 (Bcl-2) mRNA expression levels (p<0.05), highlighting its inhibitory role in cell proliferation, migration, and inflammation processes. Simultaneously, hesperidin promoted the expression of BAX mRNA (p<0.05), indicating an enhancement in cell death. Molecular docking simulations further revealed robust binding affinities between hesperidin and target proteins, suggesting its potential to disrupt cellular functions and inflammatory signaling pathways in oral cancer cells. Conclusion The cytotoxic effects on the KB cell line and its anti-inflammatory properties position hesperidin as a compelling candidate for further exploration in the quest for effective oral carcinoma treatments. These findings shed light on the intricate molecular mechanisms underlying hesperidin's promise as a therapeutic agent against oral carcinoma.
Palabras clave

Texto completo: 1 Colección: 01-internacional Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article