Your browser doesn't support javascript.
loading
Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform.
Stollmann, Alexia; Garcia-Guirado, Jose; Hong, Jae-Sang; Rüedi, Pascal; Im, Hyungsoon; Lee, Hakho; Ortega Arroyo, Jaime; Quidant, Romain.
Afiliación
  • Stollmann A; Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
  • Garcia-Guirado J; Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
  • Hong JS; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Rüedi P; Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
  • Im H; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Lee H; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
  • Ortega Arroyo J; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Quidant R; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
Nat Commun ; 15(1): 4109, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38750038
ABSTRACT
Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Nanopartículas Límite: Female / Humans Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Asunto principal: Nanopartículas Límite: Female / Humans Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Suiza