Your browser doesn't support javascript.
loading
A novel integrated lateral flow immunoassay platform for the detection of cardiac troponin I using hierarchical dendritic copper-nickel nanostructures.
Tan, Yuxin; Zhang, Shirong; Liu, Yilei; Li, Jishun; Zhang, Shenglan; Pan, Hongcheng.
Afiliación
  • Tan Y; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
  • Zhang S; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
  • Liu Y; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
  • Li J; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
  • Zhang S; College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541004, China.
  • Pan H; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China. Electronic a
Talanta ; 277: 126332, 2024 Sep 01.
Article en En | MEDLINE | ID: mdl-38823322
ABSTRACT
Cardiac troponin I (cTnI) is a critical biomarker for the diagnosis of acute myocardial infarction (AMI). Herein, we report a novel integrated lateral flow immunoassay (LFIA) platform for highly sensitive point-of-care testing (POCT) of cTnI using hierarchical dendritic copper-nickel (HD-nanoCu-Ni) nanostructures. The electrodeposited HD-nanoCu-Ni film (∼22 µm thick) on an ITO-coated glass substrate exhibits superior capillary action and structural integrity. These properties enable efficient sample transport and antibody immobilization, making it a compelling alternative to conventional multi-component paper-based LFIA test strips, which are often plagued by structural fragility and susceptibility to moisture damage. The biofunctionalized HD-nanoCu-Ni substrates were laser-etched with lateral flow channels, including a sample loading/conjugate release zone, a test zone, and a control zone. Numerical simulations were used to further optimize the design of these channels to achieve optimal fluid flow and target capture. The HD-nanoCu-Ni LFIA device utilizes a fluorescence quenching based sandwich immunoassay format using antibody-labeled gold nanoparticles (AuNPs) as quenchers. Two different fluorescent materials, fluorescein isothiocyanate (FITC) and CdSe@ZnS quantum dots (QDs), were used as background fluorophores in the device. Upon the formation of a sandwich immunocomplex with cTnI on the HD-nanoCu-Ni device, introduced AuNPs led to the fluorescence quenching of the background fluorophores. The total assay time was approximately 15 min, demonstrating the rapid and efficient nature of the HD-nanoCu-Ni LFIA platform. For FITC, both inner filter effect (IFE) and fluorescence resonance energy transfer (FRET) contributed to the AuNP-mediated quenching. In the case of CdSe@ZnS QDs, IFE dominated the AuNP-induced quenching. Calibration curves were established based on the relationship between the fluorescence quenching intensity and cTnI concentration in human serum samples, ranging from 0.5 to 128 ng/mL. The limits of detection (LODs) were determined to be 0.27 ng/mL and 0.40 ng/mL for FITC and CdSe@ZnS QDs, respectively. A method comparison study using Passing-Bablok regression analysis on varying cTnI concentrations in human serum samples confirmed the equivalence of the HD-nanoCu-Ni LFIA platform to a commercial fluorescence cTnI LFIA assay kit, with no significant systematic or proportional bias observed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Troponina I / Cobre / Nanoestructuras / Níquel Límite: Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Asunto principal: Troponina I / Cobre / Nanoestructuras / Níquel Límite: Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: China