Your browser doesn't support javascript.
loading
Highly Electroactive Co2+-Based Metal-Organic Frameworks as an Efficient Coreaction Accelerator for Amplifying Near-Infrared Electrochemiluminescence of Gold Nanoclusters in Biomarkers Immunoassay.
Jia, Hongying; Zhang, Nuo; Kuang, Xuan; Ren, Xiang; Wu, Dan; Ma, Hongmin; Wei, Qin; Ju, Huangxian.
Afiliación
  • Jia H; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Zhang N; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Kuang X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Ren X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Wu D; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Ma H; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Wei Q; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
  • Ju H; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Anal Chem ; 96(27): 11044-11051, 2024 07 09.
Article en En | MEDLINE | ID: mdl-38937378
ABSTRACT
Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Asunto principal: Biomarcadores / Nanopartículas del Metal / Técnicas Electroquímicas / Estructuras Metalorgánicas / Oro / Mediciones Luminiscentes Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Biomarcadores / Nanopartículas del Metal / Técnicas Electroquímicas / Estructuras Metalorgánicas / Oro / Mediciones Luminiscentes Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article