Your browser doesn't support javascript.
loading
A Novel Two-step Classification Approach for Differentiating Bone Metastases From Benign Bone Lesions in SPECT/CT Imaging.
Xie, Weiming; Wang, Xueting; Liu, Miao; Mai, Lang; Shangguan, Haonan; Pan, Xince; Zhan, Ying; Zhang, Jinxin; Wu, Xiaodan; Dai, Yingxin; Pei, Yusong; Zhang, Guoxu; Yao, Zhaomin; Wang, Zhiguo.
Afiliación
  • Xie W; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China (W.X., L.M., X.P., Y.Z., Z.Y.); Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.
  • Wang X; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Liu M; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.); Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710000, C
  • Mai L; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China (W.X., L.M., X.P., Y.Z., Z.Y.); Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.
  • Shangguan H; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning 110167, China (H.S.).
  • Pan X; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China (W.X., L.M., X.P., Y.Z., Z.Y.); Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.
  • Zhan Y; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China (W.X., L.M., X.P., Y.Z., Z.Y.); Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.
  • Zhang J; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Wu X; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Dai Y; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Pei Y; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Zhang G; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.).
  • Yao Z; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China (W.X., L.M., X.P., Y.Z., Z.Y.); Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.
  • Wang Z; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China (W.X., X.W., M.L., L.M., X.P., Y.Z., J.Z., X.W., Y.D., Y.P., G.Z., Z.Y., Z.W.). Electronic address: wangzhiguo5778@163.com.
Acad Radiol ; 32(9): 5364-5377, 2025 Sep.
Article en En | MEDLINE | ID: mdl-40610298
RATIONALE AND OBJECTIVES: This study aims to develop and validate a novel two-step deep learning framework for the automated detection, segmentation, and classification of bone metastases in SPECT/CT imaging, accurately distinguishing malignant from benign lesions to improve early diagnosis and facilitate personalized treatment planning. MATERIALS AND METHODS: A segmentation model, BL-Seg, was developed to automatically segment lesion regions in SPECT/CT images, utilizing a multi-scale attention fusion module and a triple attention mechanism to capture metabolic variations and refine lesion boundaries. A radiomics-based ensemble learning classifier was subsequently applied to integrate metabolic and texture features for benign-malignant differentiation. The framework was trained and evaluated using a proprietary dataset of SPECT/CT images collected from our institution. Performance metrics, including Dice coefficient, sensitivity, specificity, and AUC, were compared against conventional methods. RESULTS: The study utilized a dataset of SPECT/CT cases from our institution, divided into training and test sets acquired on Siemens SPECT/CT scanners with minor protocol differences. BL-Seg achieved a Dice coefficient of 0.8797, surpassing existing segmentation models. The classification model yielded an AUC of 0.8502, with improved sensitivity and specificity compared to traditional approaches. CONCLUSION: The proposed framework, with BL-Seg's automated lesion segmentation, demonstrates superior accuracy in detecting, segmenting, and classifying bone metastases, offering a robust tool for early diagnosis and personalized treatment planning in metastatic bone disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Asunto principal: Neoplasias Óseas / Interpretación de Imagen Asistida por Computador / Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Guideline / Screening_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Acad radiol Asunto de la revista: RADIOLOGIA Año: 2025 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Asunto principal: Neoplasias Óseas / Interpretación de Imagen Asistida por Computador / Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Guideline / Screening_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Acad radiol Asunto de la revista: RADIOLOGIA Año: 2025 Tipo del documento: Article