Your browser doesn't support javascript.
loading
COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms
Villagrana-Bañuelos, Karen E.; Maeda-Gutiérrez, Valeria; Alcalá-Rmz, Vanessa; Oropeza-Valdez, Juan J.; Herrera-Van Oostdam, Ana S.; Castañeda-Delgado, Julio E.; López, Jesús Adrián; Borrego Moreno, Juan C.; Galván-Tejada, Carlos E.; Galván-Tejeda, Jorge I.; Gamboa-Rosales, Hamurabi; Luna-García, Huizilopoztli; Celaya-Padilla, José M.; López-Hernández, Yamilé.
Afiliação
  • Villagrana-Bañuelos, Karen E.; Electrical Engineering Academic Unit. Zacatecas. MX
  • Maeda-Gutiérrez, Valeria; Electrical Engineering Academic Unit. Zacatecas. MX
  • Alcalá-Rmz, Vanessa; Electrical Engineering Academic Unit. Zacatecas. MX
  • Oropeza-Valdez, Juan J.; Universidad Autónoma de Zacatecas. Zacatecas. MX
  • Herrera-Van Oostdam, Ana S.; Universidad Autónoma de San Luis Potosí. SLP. MX
  • Castañeda-Delgado, Julio E.; Instituto Mexicano de Seguridad Social. Zacatecas. MX
  • López, Jesús Adrián; Universidad Autónoma de Zacatecas. Zacatecas. MX
  • Borrego Moreno, Juan C.; Instituto Mexicano del Seguro Social. Hospital General de Zona 1 Emilio Varela Luján. Zacatecas. MX
  • Galván-Tejada, Carlos E.; Electrical Engineering Academic Unit. Zacatecas. MX
  • Galván-Tejeda, Jorge I.; Electrical Engineering Academic Unit. Zacatecas. MX
  • Gamboa-Rosales, Hamurabi; Electrical Engineering Academic Unit. Zacatecas. MX
  • Luna-García, Huizilopoztli; Electrical Engineering Academic Unit. Zacatecas. MX
  • Celaya-Padilla, José M.; Electrical Engineering Academic Unit. Zacatecas. MX
  • López-Hernández, Yamilé; Universidad Autónoma de Zacatecas. Zacatecas. MX
Rev. invest. clín ; Rev. invest. clín;74(6): 314-327, Nov.-Dec. 2022. tab, graf
Article em En | LILACS-Express | LILACS | ID: biblio-1431820
Biblioteca responsável: MX1.1
ABSTRACT
ABSTRACT

Background:

The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals.

Objectives:

To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university.

Methods:

A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19.

Results:

The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables.

Conclusion:

ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Rev. invest. clín Assunto da revista: MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Rev. invest. clín Assunto da revista: MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México