Your browser doesn't support javascript.
loading
Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
Wei, Shipeng; Roessler, Bryan C; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L; Kirk, Kevin L.
Afiliação
  • Wei S; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Roessler BC; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Icyuz M; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Chauvet S; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Tao B; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Hartman JL; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Kirk KL; *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA klkirk@uab.edu.
FASEB J ; 30(3): 1247-62, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26606940
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Ligação Proteica / Trifosfato de Adenosina / Regulador de Condutância Transmembrana em Fibrose Cística / Subfamília B de Transportador de Cassetes de Ligação de ATP Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Ligação Proteica / Trifosfato de Adenosina / Regulador de Condutância Transmembrana em Fibrose Cística / Subfamília B de Transportador de Cassetes de Ligação de ATP Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos