Your browser doesn't support javascript.
loading
Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields.
Sözer, Esin B; Wu, Yu-Hsuan; Romeo, Stefania; Vernier, P Thomas.
Afiliação
  • Sözer EB; Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way. STE 300, Norfolk, VA, USA. esozer@odu.edu.
  • Wu YH; Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
  • Romeo S; CNR - Institute for Electromagnetic Sensing of the Environment (IREA), Via Diocleziano 328, 80124, Naples, Italy.
  • Vernier PT; Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way. STE 300, Norfolk, VA, USA.
J Membr Biol ; 250(1): 21-30, 2017 02.
Article em En | MEDLINE | ID: mdl-27435216
ABSTRACT
High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Osmose / Membrana Celular / Permeabilidade da Membrana Celular / Fenômenos Eletrofisiológicos Limite: Humans Idioma: En Revista: J Membr Biol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Osmose / Membrana Celular / Permeabilidade da Membrana Celular / Fenômenos Eletrofisiológicos Limite: Humans Idioma: En Revista: J Membr Biol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos