Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells.
J Proteome Res
; 15(12): 4490-4504, 2016 12 02.
Article
em En
| MEDLINE
| ID: mdl-27794612
Although substantial progress has been made regarding the use of molecularly targeted cancer therapies, resistance almost invariably develops and presents a major clinical challenge. The tumor microenvironment can rescue cancer cells from kinase inhibitors by growth-factor-mediated induction of pro-survival pathways. Here we show that epidermal growth factor receptor (EGFR) inhibition by Gefitinib is counteracted by growth factors, notably FGF2, and we assessed the global molecular consequences of this resistance at the proteome and phosphoproteome level in A431 cells. Tandem mass tag peptide labeling and quantitative mass spectrometry allowed the identification and quantification of 22â¯000 phosphopeptides and 8800 proteins in biological triplicates without missing values. The data show that FGF2 protects the cells from the antiproliferative effect of Gefitinib and largely prevents reprogramming of the proteome and phosphoproteome. Simultaneous EGFR/FGFR or EGFR/GSG2 (Haspin) inhibition overcomes this resistance, and the phosphoproteomic experiments further prioritized the RAS/MEK/ERK as well as the PI3K/mTOR axis for combination treatment. Consequently, the MEK inhibitor Trametinib prevented FGF2-mediated survival of EGFR inhibitor-resistant cells when used in combination with Gefitinib. Surprisingly, the PI3K/mTOR inhibitor Omipalisib reversed resistance mediated by all four growth factors tested, making it an interesting candidate for mitigating the effects of the tumor microenvironment.
Palavras-chave
Buscar no Google
Coleções:
01-internacional
Temas:
Geral
/
Tipos_de_cancer
/
Outros_tipos
Base de dados:
MEDLINE
Assunto principal:
Fosfopeptídeos
/
Fator 2 de Crescimento de Fibroblastos
/
Resistencia a Medicamentos Antineoplásicos
/
Proteoma
/
Receptores ErbB
/
Neoplasias
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
J Proteome Res
Assunto da revista:
BIOQUIMICA
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
Alemanha