Your browser doesn't support javascript.
loading
Epstein-Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity.
Cheng, Adam Z; Yockteng-Melgar, Jaime; Jarvis, Matthew C; Malik-Soni, Natasha; Borozan, Ivan; Carpenter, Michael A; McCann, Jennifer L; Ebrahimi, Diako; Shaban, Nadine M; Marcon, Edyta; Greenblatt, Jack; Brown, William L; Frappier, Lori; Harris, Reuben S.
Afiliação
  • Cheng AZ; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Yockteng-Melgar J; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
  • Jarvis MC; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
  • Malik-Soni N; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
  • Borozan I; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Carpenter MA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • McCann JL; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
  • Ebrahimi D; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
  • Shaban NM; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
  • Marcon E; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Greenblatt J; Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.
  • Brown WL; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Frappier L; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
  • Harris RS; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
Nat Microbiol ; 4(1): 78-88, 2019 01.
Article em En | MEDLINE | ID: mdl-30420783
ABSTRACT
The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication1-4. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism1-4. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction. Here, we show that the large dsDNA herpesvirus Epstein-Barr virus (EBV), which is the causative agent of infectious mononucleosis and multiple cancers5, utilizes a two-pronged approach to counteract restriction by APOBEC3B. Proteomics studies and immunoprecipitation experiments showed that the ribonucleotide reductase large subunit of EBV, BORF26,7, binds APOBEC3B. Mutagenesis mapped the interaction to the APOBEC3B catalytic domain, and biochemical studies demonstrated that BORF2 stoichiometrically inhibits APOBEC3B DNA cytosine deaminase activity. BORF2 also caused a dramatic relocalization of nuclear APOBEC3B to perinuclear bodies. On lytic reactivation, BORF2-null viruses were susceptible to APOBEC3B-mediated deamination as evidenced by lower viral titres, lower infectivity and hypermutation. The Kaposi's sarcoma-associated herpesvirus homologue, ORF61, also bound APOBEC3B and mediated relocalization. These data support a model where the genomic integrity of human γ-herpesviruses is maintained by active neutralization of the antiviral enzyme APOBEC3B.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Ribonucleotídeo Redutases / Proteínas Virais / Herpesvirus Humano 4 / Herpesvirus Humano 8 / Citidina Desaminase Limite: Humans Idioma: En Revista: Nat Microbiol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Ribonucleotídeo Redutases / Proteínas Virais / Herpesvirus Humano 4 / Herpesvirus Humano 8 / Citidina Desaminase Limite: Humans Idioma: En Revista: Nat Microbiol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos