Your browser doesn't support javascript.
loading
Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging.
Shaver, Madeleine M; Kohanteb, Paul A; Chiou, Catherine; Bardis, Michelle D; Chantaduly, Chanon; Bota, Daniela; Filippi, Christopher G; Weinberg, Brent; Grinband, Jack; Chow, Daniel S; Chang, Peter D.
Afiliação
  • Shaver MM; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. mshaver@uci.edu.
  • Kohanteb PA; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. pkohante@uci.edu.
  • Chiou C; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. clchiou@uci.edu.
  • Bardis MD; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. mbardis@uci.edu.
  • Chantaduly C; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. cchantad@uci.edu.
  • Bota D; Department of Neurology, University of California, Irvine, Orange, CA 92868-3201, USA. dbota@uci.edu.
  • Filippi CG; Department of Radiology, North Shore University Hospital, Manhasset, NY 11030, USA. sairaallapeikko@gmail.com.
  • Weinberg B; Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA. Brent.d.weinberg@gmail.com.
  • Grinband J; Department of Radiology, Columbia University, New York, NY 10032, USA. jackgrinband@gmail.com.
  • Chow DS; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. chowd3@uci.edu.
  • Chang PD; Department of Radiology, University of California, Irvine, Orange, CA 92868-3201, USA. changp6@uci.edu.
Cancers (Basel) ; 11(6)2019 Jun 14.
Article em En | MEDLINE | ID: mdl-31207930
Radiographic assessment with magnetic resonance imaging (MRI) is widely used to characterize gliomas, which represent 80% of all primary malignant brain tumors. Unfortunately, glioma biology is marked by heterogeneous angiogenesis, cellular proliferation, cellular invasion, and apoptosis. This translates into varying degrees of enhancement, edema, and necrosis, making reliable imaging assessment challenging. Deep learning, a subset of machine learning artificial intelligence, has gained traction as a method, which has seen effective employment in solving image-based problems, including those in medical imaging. This review seeks to summarize current deep learning applications used in the field of glioma detection and outcome prediction and will focus on (1) pre- and post-operative tumor segmentation, (2) genetic characterization of tissue, and (3) prognostication. We demonstrate that deep learning methods of segmenting, characterizing, grading, and predicting survival in gliomas are promising opportunities that may enhance both research and clinical activities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos