Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors.
Adv Mater
; 32(14): e1903759, 2020 Apr.
Article
em En
| MEDLINE
| ID: mdl-32078198
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Temas:
Geral
Base de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Barreira Hematoencefálica
/
Nanopartículas
/
Antineoplásicos
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos