Your browser doesn't support javascript.
loading
(2R,3S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia.
Idle, Jeffrey R; Seipel, Katja; Bacher, Ulrike; Pabst, Thomas; Beyoglu, Diren.
Afiliação
  • Idle JR; Arthur G. Zupko's Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201-5423, USA.
  • Seipel K; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
  • Bacher U; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
  • Pabst T; Department of Hematology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.
  • Beyoglu D; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland.
Cancers (Basel) ; 12(10)2020 Oct 01.
Article em En | MEDLINE | ID: mdl-33019704
ABSTRACT
Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography-mass spectrometry (GC-MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Leucemia Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Leucemia Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos