Your browser doesn't support javascript.
loading
Human umbilical cord-derived mesenchymal stem cells and human cord blood mononuclear cells protect against cisplatin-induced acute kidney injury in rat models.
Xu, Qian; Yan, Ping; Duan, Xiang-Jie; Wu, Xi; Chen, Xiao-Jun; Luo, Min; Peng, Jing-Cheng; Feng, Li-Xin; Liu, Jie; Zhong, Hui-Lin; Cheng, Wei; Zou, Qing-Yan; Duan, Shao-Bin.
Afiliação
  • Xu Q; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Yan P; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Duan XJ; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Wu X; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Chen XJ; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Luo M; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Peng JC; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Feng LX; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Liu J; Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P.R. China.
  • Zhong HL; Neuromedical Research Center, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China.
  • Cheng W; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
  • Zou QY; Neuromedical Research Center, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China.
  • Duan SB; Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, P.R. China.
Exp Ther Med ; 20(6): 145, 2020 Dec.
Article em En | MEDLINE | ID: mdl-33093883
ABSTRACT
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a promising tool to attenuate cisplatin (CP)-induced acute kidney injury (AKI). However, whether the transplantation of human cord blood mononuclear cells (hCBMNCs) exhibits similar protective effects and their potential underlying mechanisms of action remain unclear. The present study aimed to determine the protective effects of hUCMSCs and hCBMNCs transplantation therapies on an established CP-induced rat model and explore their underlying mechanisms of action. A total of 24 Sprague-Dawley rats, selected based on body weight, were randomly assigned into 4 groups i) normal control; ii) model (CP); iii) hCBMNCs (CP + hCBMNCs); and iv) hUCMSCs (CP + hUCMSCs). hUCMSCs (2.0x106 cells) and hCBMNCs (2.0x106 cells) were injected into the femoral vein of rats 24 h after CP (8 mg/kg) treatment. To determine the effects of hCBMNCs and hUCMSCs on CP-induced rats, renal function assessment and histological evaluations were performed. Expression levels of high mobility group box 1 (HMGB1) and the ratio of Bax/Bcl2 in renal tissues were detected to elucidate their underlying molecular mechanisms of action. The results demonstrated that transplantation of hUCMSCs and hCBMNCs significantly improved renal function in CP-induced AKI rats, as evidenced by the enhancement of renal morphology; decreased concentrations of blood urea nitrogen and serum creatinine; and a lower percentage of apoptotic renal tubular cells. The expression of HMGB1 and the ratio of Bax/Bcl-2 were significantly reduced in the hUCMSCs and hCBMNCs groups compared with CP group. In conclusion, the present study indicated that hCBMNCs exert similar protective effects to hUCMSCs on CP-induced AKI. hUCMSCs and hCBMNCs protect against CP-induced AKI by suppressing HMGB1 expression and preventing cell apoptosis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Exp Ther Med Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Exp Ther Med Ano de publicação: 2020 Tipo de documento: Article