Your browser doesn't support javascript.
loading
High-Sensitive Detection of Small-Cell Lung Cancer Cells Based on Terminal Deoxynucleotidyl Transferase-Mediated Extension Polymerization Aptamer Probe.
Chen, Jialing; Xu, Jieru; Wan, Tao; Deng, Hongli; Li, Dairong.
Afiliação
  • Chen J; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Xu J; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Wan T; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Deng H; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
  • Li D; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
ACS Biomater Sci Eng ; 7(3): 1169-1180, 2021 03 08.
Article em En | MEDLINE | ID: mdl-33541073
Small-cell lung cancer (SCLC) is characterized by early metastasis and high invasiveness, poor prognosis, and a low five-year survival rate. Therefore, the development of the effective detection of SCLC cells and imaging methods has potential significance for the prognosis and treatment of SCLC. We designed a terminal deoxynucleotidyl transferase (TdT)-mediated extension polymerization aptamer probe (denoted as TEPAP). Aptamer HCC03 was used as an element of recognizing SCLC, and it was extended as a long poly(T) tail at the 3'-hydroxyl terminus by TdT and then hybridized with short poly(A) labeled with 6-carboxyfluorescein (FAM) to construct TEPAP for the high-sensitivity detection of SCLC. The results showed that the probe could specifically recognize NCI-H446 cells. Compared with HCC03 labeled with FAM, TEPAP has demonstrated a higher fluorescence signal in recognizing NCI-H446 cells, and the fluorescence intensity of TEPAP recognizing the target cells was 10 times higher than that of nontarget cells. Flow cytometric analysis showed that the detection limit of this method was as low as 17 NCI-H446 cells in 200 µL of binding buffer. In the application of clinical cytology cell blocks, the sensitivity, specificity, and accuracy of TEPAP were 89.74, 94.44, and 91.23%, respectively. The high sensitivity and specificity of TEPAP in the application of clinical samples show that the proposed probe has great potential in the diagnosis of SCLC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Pulmao Base de dados: MEDLINE Assunto principal: Aptâmeros de Nucleotídeos / Carcinoma de Pequenas Células do Pulmão / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Pulmao Base de dados: MEDLINE Assunto principal: Aptâmeros de Nucleotídeos / Carcinoma de Pequenas Células do Pulmão / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China