Your browser doesn't support javascript.
loading
Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella-containing vacuole.
Hüsler, Dario; Steiner, Bernhard; Welin, Amanda; Striednig, Bianca; Swart, A Leoni; Molle, Virginie; Hilbi, Hubert; Letourneur, François.
Afiliação
  • Hüsler D; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  • Steiner B; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  • Welin A; Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
  • Striednig B; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  • Swart AL; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  • Molle V; Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France.
  • Hilbi H; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  • Letourneur F; Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France.
Cell Microbiol ; 23(5): e13318, 2021 05.
Article em En | MEDLINE | ID: mdl-33583106
ABSTRACT
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Vacúolos / Proteínas de Protozoários / Legionella pneumophila / Dictyostelium / Retículo Endoplasmático / GTP Fosfo-Hidrolases Idioma: En Revista: Cell Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Vacúolos / Proteínas de Protozoários / Legionella pneumophila / Dictyostelium / Retículo Endoplasmático / GTP Fosfo-Hidrolases Idioma: En Revista: Cell Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça