Your browser doesn't support javascript.
loading
Paracrine Placental Growth Factor Signaling in Response to Ionizing Radiation Is p53-Dependent and Contributes to Radioresistance.
Kazimova, Tamara; Tschanz, Fabienne; Sharma, Ashish; Telarovic, Irma; Wachtel, Marco; Pedot, Gloria; Schäfer, Beat; Pruschy, Martin.
Afiliação
  • Kazimova T; Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
  • Tschanz F; Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
  • Sharma A; Clinical Science Oncology, Medical & Scientific Affairs, Roche Diagnostics International Ltd., Rotkreuz Switzerland.
  • Telarovic I; Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
  • Wachtel M; Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland.
  • Pedot G; Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland.
  • Schäfer B; Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland.
  • Pruschy M; Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. martin.pruschy@uzh.ch.
Mol Cancer Res ; 19(6): 1051-1062, 2021 06.
Article em En | MEDLINE | ID: mdl-33619227
Placental growth factor (PlGF) is a pro-angiogenic, N-glycosylated growth factor, which is secreted under pathologic situations. Here, we investigated the regulation of PlGF in response to ionizing radiation (IR) and its role for tumor angiogenesis and radiosensitivity. Secretion and expression of PlGF was induced in multiple tumor cell lines (medulloblastoma, colon and lung adenocarcinoma) in response to irradiation in a dose- and time-dependent manner. Early upregulation of PlGF expression and secretion in response to irradiation was primarily observed in p53 wild-type tumor cells, whereas tumor cells with mutated p53 only showed a minimal or delayed response. Mechanistic investigations with genetic and pharmacologic targeting of p53 corroborated regulation of PlGF by the tumor suppressor p53 in response to irradiation under normoxic and hypoxic conditions, but with so far unresolved mechanisms relevant for its minimal and delayed expression in tumor cells with a p53-mutated genetic background. Probing a paracrine role of IR-induced PlGF secretion in vitro, migration of endothelial cells was specifically increased towards irradiated PlGF wild type but not towards irradiated PlGF-knockout (PIGF-ko) medulloblastoma cells. Tumors derived from these PlGF-ko cells displayed a reduced growth rate, but similar tumor vasculature formation as in their wild-type counterparts. Interestingly though, high-dose irradiation strongly reduced microvessel density with a concomitant high rate of complete tumor regression only in the PlGF-ko tumors. IMPLICATIONS: Our study shows a strong paracrine vasculature-protective role of PlGF as part of a p53-regulated IR-induced resistance mechanism and suggest PlGF as a promising target for a combined treatment modality with RT.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Prevencao_e_fatores_de_risco / Agentes_cancerigenos / Radiacao_solar Base de dados: MEDLINE Assunto principal: Radiação Ionizante / Tolerância a Radiação / Regulação Neoplásica da Expressão Gênica / Proteína Supressora de Tumor p53 / Comunicação Parácrina / Fator de Crescimento Placentário Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Res Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Prevencao_e_fatores_de_risco / Agentes_cancerigenos / Radiacao_solar Base de dados: MEDLINE Assunto principal: Radiação Ionizante / Tolerância a Radiação / Regulação Neoplásica da Expressão Gênica / Proteína Supressora de Tumor p53 / Comunicação Parácrina / Fator de Crescimento Placentário Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Res Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça