Your browser doesn't support javascript.
loading
Polyphenol-Peptide Interactions in Mitigation of Alzheimer's Disease: Role of Biosurface-Induced Aggregation.
Gaudreault, Roger; Hervé, Vincent; van de Ven, Theo G M; Mousseau, Normand; Ramassamy, Charles.
Afiliação
  • Gaudreault R; Department of Physics, Université de Montréal, Montreal, QC, Canada.
  • Hervé V; INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
  • van de Ven TGM; Department of Chemistry, McGill University, Montreal, QC, Canada.
  • Mousseau N; Department of Physics, Université de Montréal, Montreal, QC, Canada.
  • Ramassamy C; INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
J Alzheimers Dis ; 81(1): 33-55, 2021.
Article em En | MEDLINE | ID: mdl-33749653
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-ß (Aß) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as "confinement stability". Here, on the contrary, the adsorption of Aß and tau on biosurfaces other than Aß- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aß and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Polifenóis / Agregação Patológica de Proteínas Limite: Humans Idioma: En Revista: J Alzheimers Dis Assunto da revista: GERIATRIA / NEUROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Polifenóis / Agregação Patológica de Proteínas Limite: Humans Idioma: En Revista: J Alzheimers Dis Assunto da revista: GERIATRIA / NEUROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá