A carboxymethyl lentinan layer by layer self-assembly system as a promising drug chemotherapeutic platform.
Carbohydr Polym
; 261: 117847, 2021 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-33766343
Surface functionalization of mesoporous silica nanoparticles (MSNs) has been proposed as an efficient strategy for enhancing the biocompatibility and efficiency of an MSN-based carrier platform. Herein, natural polyelectrolyte multilayers composed of poly-l-ornithine (PLO) and carboxymethyl lentinan (LC) were coated on the surface of MSNs through a layer-by-layer (LbL) self-assembly technique, and were characterized by ζ-potential, FTIR, 13C NMR, SEM, TEM, XRD, and TG. The prepared carrier presented alternating positive and negative potentials when coated with the polyelectrolytes, and the surface of MSN-PLO/LC was rougher compared to the naked MSNs. The biocompatibility tests, including cytocompatibility, hemocompatibility, and histocompatibility, showed that MSNs biocompatibility could be improved by modifying LC. A high loading and sustained release drug delivery system was constructed after loading doxorubicin (DOX) into the prepared MSN-PLO/LC, which exhibited significant anti-proliferative efficiency in human cervical cancer cell lines (Hela). Therefore, the PLO/LC LbL NPs (layer-by-layer self-assembled nanoparticles coated with PLO/LC layers) based on MSNs, which is easily prepared by electrostatic interactions, can be considered a promising drug chemotherapeutic platform and delivery technique for future human cervical cancer therapy.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Temas:
Geral
Base de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Lentinano
/
Antineoplásicos
Limite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Carbohydr Polym
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China