Your browser doesn't support javascript.
loading
Titrating Polyarginine into Nanofibers Enhances Cyclic-Dinucleotide Adjuvanticity in Vitro and after Sublingual Immunization.
Kelly, Sean H; Cossette, Benjamin J; Varadhan, Ajay K; Wu, Yaoying; Collier, Joel H.
Afiliação
  • Kelly SH; Biomedical Engineering Department, Duke University, Durham, North Carolina 27708, United States.
  • Cossette BJ; Biomedical Engineering Department, Duke University, Durham, North Carolina 27708, United States.
  • Varadhan AK; Biomedical Engineering Department, Duke University, Durham, North Carolina 27708, United States.
  • Wu Y; Biomedical Engineering Department, Duke University, Durham, North Carolina 27708, United States.
  • Collier JH; Biomedical Engineering Department, Duke University, Durham, North Carolina 27708, United States.
ACS Biomater Sci Eng ; 7(5): 1876-1888, 2021 05 10.
Article em En | MEDLINE | ID: mdl-33775089
ABSTRACT
Effective sublingual peptide immunization requires overcoming challenges of both delivery and immunogenicity. Mucosal adjuvants, such as cyclic-dinucleotides (CDN), can promote sublingual immune responses but must be codelivered with the antigen to the epithelium for maximum effect. We designed peptide-polymer nanofibers (PEG-Q11) displaying nona-arginine (R9) at a high density to promote complexation with CDNs via bidentate hydrogen-bonding with arginine side chains. We coassembled PEG-Q11 and PEG-Q11R9 peptides to titrate the concentration of R9 within nanofibers. In vitro, PEG-Q11R9 fibers and cyclic-di-GMP or cyclic-di-AMP adjuvants had a synergistic effect on enhancing dendritic cell activation that was STING-dependent and increased monotonically with increasing R9 concentration. The polyvalent display of R9 on assembled nanofibers was significantly more effective at promoting CDN-mediated DC activation in vitro than mixing nanofibers with an equimolar concentration of unassembled R9 peptide. The sublingual administration of nanofibers revealed a bell-shaped trend between increasing R9 concentration and enhancements to antigen trafficking and the activation of DCs in the draining lymph nodes. Intermediate levels of R9 within sublingually administered PEG-Q11 fibers were optimal for immunization, suggesting a balance between polyarginine's ability to sequester CDNs along the nanofiber and its potentially detrimental mucoadhesive interactions. These findings present a potentially generalizable biomaterial strategy for enhancing the potency of CDN adjuvants and reveal important design considerations for the nascent field of sublingual biomaterial immunization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Nanofibras Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Nanofibras Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos