Light Weighted Healthcare CNN Model to Detect Prostate Cancer on Multiparametric MRI.
Comput Intell Neurosci
; 2022: 5497120, 2022.
Article
em En
| MEDLINE
| ID: mdl-35669675
The SEMRCNN model is proposed for autonomously extracting prostate cancer locations from regions of multiparametric magnetic resonance imaging (MP-MRI). Feature maps are explored in order to provide fine segmentation based on the candidate regions. Two parallel convolutional networks retrieve these maps of apparent diffusion coefficient (ADC) and T2W images, which are then integrated to use the complimentary information in MP-MRI. By utilizing extrusion and excitation blocks, it is feasible to automatically increase the number of relevant features in the fusion feature map. The aim of this study is to study the current scenario of the SE Mask-RCNN and deep convolutional network segmentation model that can automatically identify prostate cancer in the MP-MRI prostatic region. Experiments are conducted using 140 instances. SEMRCNN segmentation of prostate cancer lesions has a Dice coefficient of 0.654, a sensitivity of 0.695, a specificity of 0.970, and a positive predictive value of 0.685. SEMRCNN outperforms other models like as V net, Resnet50-U-net, Mask-RCNN, and U network model for prostate cancer MP-MRI segmentation. This approach accomplishes fine segmentation of lesions by recognizing and finding potential locations of prostate cancer lesions, eliminating interference from surrounding areas, and improving the learning of the lesions' features.
Texto completo:
1
Coleções:
01-internacional
Temas:
Cuidados_paliativos
/
Geral
/
Tipos_de_cancer
/
Prostata
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Próstata
/
Imageamento por Ressonância Magnética Multiparamétrica
Tipo de estudo:
Prognostic_studies
Limite:
Humans
/
Male
Idioma:
En
Revista:
Comput Intell Neurosci
Assunto da revista:
INFORMATICA MEDICA
/
NEUROLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Índia