Your browser doesn't support javascript.
loading
Inhibition of BTK improved APAP-induced liver injury via suppressing proinflammatory macrophages activation by restoring mitochondrion function.
Guo, Huiting; Xie, Mingjie; Liu, Weixia; Chen, Shiwei; Ye, Bingjue; Yao, Jiping; Xiao, Zhengyun; Zhou, Cheng; Zheng, Min.
Afiliação
  • Guo H; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Xie M; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Liu W; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Chen S; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Ye B; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Yao J; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Xiao Z; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
  • Zhou C; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China. Electronic address: zhoucheng0113@
  • Zheng M; The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China. Electronic address: minzheng@zju.e
Int Immunopharmacol ; 110: 109036, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35850053
ABSTRACT

BACKGROUND:

Acetaminophen (APAP) overdose can cause severe liver injury and APAP-induced liver injury (AILI) is one of the leading causes of acute liver failure (ALF). Bruton's tyrosine kinase (BTK) is a key tyrosine kinase in immune responses, which plays an important role in many inflammatory diseases. However, its effect on AILI is still not clear. Here, we aimed to assess the effect of BTK on AILI and explore its underlying mechanism.

METHODS:

In our study, western blot and immunohistochemistry were used to detect the expression of BTK in AILI. The C57BL/6 mice were used to check the protective effect of BTK inhibition on AILI and the activation of BTK was confirmed in mice macrophages treated with APAP. Immunofluorescence, immunohistochemistry, oxygen consumption rate (OCR) detection, polymerase chain reaction (PCR), flow cytometry and western blot were used to determine the role of BTK in mitochondrial dynamics and function of macrophages and the underlying mechanisms in AILI.

RESULTS:

Our results showed that BTK upregulated in AILI. BTK inhibition protected mice from AILI and BTK was activated in mice macrophages in response to APAP. Mechanically, BTK inhibition promoted mitochondrial fusion and restored mitochondrial function through phospholipase C gamma 2 (PLCγ2)-reactive oxygen species (ROS)-Optic Atrophy 1(OPA1) pathway in macrophages and finally suppressed the release of proinflammatory cytokines.

CONCLUSIONS:

In conclusion, we found that BTK inhibition protected mice from AILI by restoring the mitochondrial function of macrophages through the improvement of the mitochondrial dynamic imbalance via PLCγ2-ROS-OPA1 signaling pathway, which indicated that BTK might be a potential therapeutic target of AILI.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Doença Hepática Crônica Induzida por Substâncias e Drogas Limite: Animals Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Doença Hepática Crônica Induzida por Substâncias e Drogas Limite: Animals Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China