Your browser doesn't support javascript.
loading
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.
Chen, Richard J; Lu, Ming Y; Williamson, Drew F K; Chen, Tiffany Y; Lipkova, Jana; Noor, Zahra; Shaban, Muhammad; Shady, Maha; Williams, Mane; Joo, Bumjin; Mahmood, Faisal.
Afiliação
  • Chen RJ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of H
  • Lu MY; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Ha
  • Williamson DFK; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Ha
  • Chen TY; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Harvard Cancer Institute, Boston, MA, USA.
  • Lipkova J; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Harvard Cancer Institute, Boston, MA, USA.
  • Noor Z; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Shaban M; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Ha
  • Shady M; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Harvard Canc
  • Williams M; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of H
  • Joo B; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Mahmood F; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Ha
Cancer Cell ; 40(8): 865-878.e6, 2022 08 08.
Article em En | MEDLINE | ID: mdl-35944502
ABSTRACT
The rapidly emerging field of computational pathology has demonstrated promise in developing objective prognostic models from histology images. However, most prognostic models are either based on histology or genomics alone and do not address how these data sources can be integrated to develop joint image-omic prognostic models. Additionally, identifying explainable morphological and molecular descriptors from these models that govern such prognosis is of interest. We use multimodal deep learning to jointly examine pathology whole-slide images and molecular profile data from 14 cancer types. Our weakly supervised, multimodal deep-learning algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover prognostic features that correlate with poor and favorable outcomes. We present all analyses for morphological and molecular correlates of patient prognosis across the 14 cancer types at both a disease and a patient level in an interactive open-access database to allow for further exploration, biomarker discovery, and feature assessment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cancer Cell Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cancer Cell Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article