Your browser doesn't support javascript.
loading
Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer.
Vanguri, Rami S; Luo, Jia; Aukerman, Andrew T; Egger, Jacklynn V; Fong, Christopher J; Horvat, Natally; Pagano, Andrew; Araujo-Filho, Jose de Arimateia Batista; Geneslaw, Luke; Rizvi, Hira; Sosa, Ramon; Boehm, Kevin M; Yang, Soo-Ryum; Bodd, Francis M; Ventura, Katia; Hollmann, Travis J; Ginsberg, Michelle S; Gao, Jianjiong; Hellmann, Matthew D; Sauter, Jennifer L; Shah, Sohrab P.
Afiliação
  • Vanguri RS; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Luo J; Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Aukerman AT; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Egger JV; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Fong CJ; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Horvat N; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Pagano A; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Araujo-Filho JAB; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Geneslaw L; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Rizvi H; Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Sosa R; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Boehm KM; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Yang SR; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.
  • Bodd FM; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Ventura K; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Hollmann TJ; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Ginsberg MS; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Gao J; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
  • Hellmann MD; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Sauter JL; Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nat Cancer ; 3(10): 1151-1164, 2022 10.
Article em En | MEDLINE | ID: mdl-36038778
Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74-0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52-0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65-0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Pulmao Base de dados: MEDLINE Assunto principal: Radiologia / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nat Cancer Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Pulmao Base de dados: MEDLINE Assunto principal: Radiologia / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nat Cancer Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos