Your browser doesn't support javascript.
loading
Caveolin-1 signaling-driven mitochondrial fission and cytoskeleton remodeling promotes breast cancer migration.
Xiao, Jinman; Zhao, Tian; Fang, Wanli; Chen, Yu; Wu, Hao; Li, Ping; Chen, Xiangyan; Yan, Ran; Jiang, Ying; Li, Shun; Yang, Hong; Wu, Chunhui; Qin, Xiang; Liao, Xiaoling; Cai, Lulu; Li, Tingting; Liu, Yiyao.
Afiliação
  • Xiao J; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Zhao T; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Fang W; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Chen Y; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Wu H; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China.
  • Li P; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Chen X; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Yan R; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sich
  • Jiang Y; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Li S; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Yang H; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Wu C; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Qin X; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Liao X; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China.
  • Cai L; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
  • Li T; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China. Electronic address: litingting@uestc.edu.cn.
  • Liu Y; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sich
Int J Biochem Cell Biol ; 152: 106307, 2022 11.
Article em En | MEDLINE | ID: mdl-36162640
ABSTRACT
Mitochondria are highly dynamic organelles that constantly divide and fuse to maintain their proper structure and function. Cancer cells are often accompanied by an imbalance of mitochondrial fusion and fission, cancer progression is greatly affected by this imbalance. Here, we found that high-metastatic breast cancer MDA-MB-231 cells possess higher caveolin-1 (Cav-1) expression compared with low-metastatic breast cancer MCF-7 cells or normal breast epithelial MCF-10A cells. Downregulation of Cav-1 decreases the migratory and invasive abilities of MDA-MB-231 cells. Our results further demonstrated that downregulation of Cav-1 facilitated DRP1 and MFN2 to translocate to mitochondria, increasing the inhibitory phosphorylation level of DRP1 at Ser637 by protein kinase A (PKA), resulting in mitochondria elongation. We also showed that downregulation of Cav-1 significantly reduced the Rac1 activity by affecting intracellular reactive oxygen species (ROS) generation, which then inhibited F-actin formation. Based on these findings, we proposed that Cav-1 mediated mitochondrial fission-affected intracellular ROS generation and activated Rho GTPases, leading to F-actin-dependent formation of lamellipodia and promotion of breast cancer motility.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Caveolina 1 / Dinâmica Mitocondrial Limite: Female / Humans Idioma: En Revista: Int J Biochem Cell Biol Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Caveolina 1 / Dinâmica Mitocondrial Limite: Female / Humans Idioma: En Revista: Int J Biochem Cell Biol Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article