Your browser doesn't support javascript.
loading
Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions.
Li, Guangyue; Jian, Zixiang; Wang, He; Xu, Ling; Zhang, Tingwei; Song, Jinlin.
Afiliação
  • Li G; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.
  • Jian Z; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
  • Wang H; College of Stomatology, Chongqing Medical University, Chongqing, China.
  • Xu L; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.
  • Zhang T; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
  • Song J; College of Stomatology, Chongqing Medical University, Chongqing, China.
Oxid Med Cell Longev ; 2022: 3319056, 2022.
Article em En | MEDLINE | ID: mdl-36262283
ABSTRACT
Advanced glycation end products (AGEs) accumulate in the bone tissue of patients with diabetes mellitus, resulting in oxidative stress, poor bone healing, or regeneration. Irisin, a novel exercise-induced myokine, is involved in the regulation of bone metabolism. However, the effects of irisin on adipose-derived stem cell (ASC) osteogenic differentiation and bone healing under diabetic conditions remain poorly understood. ASCs were obtained from inguinal fat of Sprague-Dawley rats and treated with different concentrations of AGEs and irisin. Cell proliferation, apoptosis, and osteogenic differentiation abilities of ASCs were detected. To explore the regulatory role of sirtuin 3 (SIRT3), ASCs were transfected with lentivirus-mediated SIRT3 overexpression or knockdown vectors. Next, we investigated mitochondrial functions, mitophagy, and mitochondrial biogenesis in different groups. Moreover, SOD2 acetylation and potential signaling pathways were assessed. Additionally, a diabetic rat model was used to evaluate the effect of irisin on bone healing in calvarial critical-sized defects (CSDs) in vivo. Our results showed that irisin incubation mitigated the inhibitory effects of AGEs on ASCs by increasing cell viability and promoting osteogenesis. Moreover, irisin modulated mitochondrial membrane potential, intracellular ROS levels, mitochondrial O2 ·- status, ATP generation, complex I and IV activities, mitophagy, and mitochondrial biogenesis via a SIRT3-mediated pathway under AGEs exposure. Furthermore, in calvarial CSDs of diabetic rats, transplantation of gels encapsulating irisin-pretreated ASCs along with irisin largely enhanced bone healing. These findings suggest that irisin attenuates AGE-induced ASC dysfunction through SIRT3-mediated maintenance of oxidative stress homeostasis and regulation of mitophagy and mitochondrial biogenesis. Thus, our studies shed new light on the role of irisin in promoting the ASC osteogenesis and targeting SIRT3 as a novel therapeutic intervention strategy for bone regeneration under diabetic conditions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Fibronectinas / Diabetes Mellitus Experimental / Sirtuína 3 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Oxid Med Cell Longev Assunto da revista: METABOLISMO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Fibronectinas / Diabetes Mellitus Experimental / Sirtuína 3 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Oxid Med Cell Longev Assunto da revista: METABOLISMO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China