Your browser doesn't support javascript.
loading
Attention Detection by Heartbeat and Respiratory Features from Radio-Frequency Sensor.
Sharma, Pragya; Zhang, Zijing; Conroy, Thomas B; Hui, Xiaonan; Kan, Edwin C.
Afiliação
  • Sharma P; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA.
  • Zhang Z; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA.
  • Conroy TB; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA.
  • Hui X; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA.
  • Kan EC; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article em En | MEDLINE | ID: mdl-36298396
This work presents a study on users' attention detection with reference to a relaxed inattentive state using an over-the-clothes radio-frequency (RF) sensor. This sensor couples strongly to the internal heart, lung, and diaphragm motion based on the RF near-field coherent sensing principle, without requiring a tension chest belt or skin-contact electrocardiogram. We use cardiac and respiratory features to distinguish attention-engaging vigilance tasks from a relaxed, inattentive baseline state. We demonstrate high-quality vitals from the RF sensor compared to the reference electrocardiogram and respiratory tension belts, as well as similar performance for attention detection, while improving user comfort. Furthermore, we observed a higher vigilance-attention detection accuracy using respiratory features rather than heartbeat features. A high influence of the user's baseline emotional and arousal levels on the learning model was noted; thus, individual models with personalized prediction were designed for the 20 participants, leading to an average accuracy of 83.2% over unseen test data with a high sensitivity and specificity of 85.0% and 79.8%, respectively.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Agentes_cancerigenos Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Taxa Respiratória Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Temas: Agentes_cancerigenos Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Taxa Respiratória Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos