Your browser doesn't support javascript.
loading
From ethene to propene (ETP) on tailored silica-alumina supports with isolated Ni(ii) sites: uncovering the importance of surface nickel aluminate sites and the carbon-pool mechanism.
Chen, Zixuan; Docherty, Scott R; Florian, Pierre; Kierzkowska, Agnieszka; Moroz, Ilia B; Abdala, Paula M; Copéret, Christophe; Müller, Christoph R; Fedorov, Alexey.
Afiliação
  • Chen Z; Laboratory of Energy Science and Engineering, ETH Zürich 8092 Zürich Switzerland muelchri@ethz.ch fedoroal@ethz.ch.
  • Docherty SR; Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zürich Switzerland ccoperet@ethz.ch.
  • Florian P; CNRS, CEMHTI UPR3079, University of Orléans F-45071 Orléans France.
  • Kierzkowska A; Laboratory of Energy Science and Engineering, ETH Zürich 8092 Zürich Switzerland muelchri@ethz.ch fedoroal@ethz.ch.
  • Moroz IB; Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zürich Switzerland ccoperet@ethz.ch.
  • Abdala PM; Laboratory of Energy Science and Engineering, ETH Zürich 8092 Zürich Switzerland muelchri@ethz.ch fedoroal@ethz.ch.
  • Copéret C; Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zürich Switzerland ccoperet@ethz.ch.
  • Müller CR; Laboratory of Energy Science and Engineering, ETH Zürich 8092 Zürich Switzerland muelchri@ethz.ch fedoroal@ethz.ch.
  • Fedorov A; Laboratory of Energy Science and Engineering, ETH Zürich 8092 Zürich Switzerland muelchri@ethz.ch fedoroal@ethz.ch.
Catal Sci Technol ; 12(19): 5861-5868, 2022 Oct 03.
Article em En | MEDLINE | ID: mdl-36324825
Catalysts with well-defined isolated Ni(ii) surface sites have been prepared on three silica-based supports. The outer shells of the support were comprised either of an amorphous aluminosilicate or amorphous alumina (AlO x ) layer - associated with a high and low density of strong Brønsted acid sites (BAS), respectively. When tested for ethene-to-propene conversion, Ni catalysts with a higher density of strong BAS demonstrate a higher initial activity and productivity to propene. On all three catalysts, the propene productivity correlates closely with the concentration of C8 aromatics, suggesting that propene may form via a carbon-pool mechanism. While all three catalysts deactivate with time on stream, the deactivation of catalysts with Ni(ii) sites on AlO x , i.e., containing surface Ni aluminate sites, is shown to be reversible by calcination (coke removal), in contrast to the deactivation of surface Ni silicate or aluminosilicate sites, which deactivate irreversibly by forming Ni nanoparticles.

Texto completo: 1 Coleções: 01-internacional Temas: Agentes_cancerigenos Base de dados: MEDLINE Idioma: En Revista: Catal Sci Technol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Agentes_cancerigenos Base de dados: MEDLINE Idioma: En Revista: Catal Sci Technol Ano de publicação: 2022 Tipo de documento: Article